(2006•茂名)下列各圖中,沿著虛線將正方形剪成兩部分,那么由這兩部分既能拼成平行四邊形,又能拼成三角形和梯形的是( )
A.
B.
C.
D.
【答案】分析:第一個正方形沿虛線剪成兩部分,這兩部分可拼成平行四邊形;第二個既可以拼成平行四邊形,也可以拼成下三角和梯形;第三個拼成的圖形為特殊的平行四邊形正方形;第四個可拼成平行四邊形.
解答:解:

故選B.
點評:本題主要考查剪紙問題,充分考查了學生的空間想象能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2006•茂名)已知:半徑為1的⊙O1與x軸交于A、B兩點,圓心O1的坐標為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A、B兩點,其頂點為F.
(1)求b、c的值及二次函數(shù)頂點F的坐標;
(2)寫出將二次函數(shù)y=-x2+bx+c的圖象向下平移1個單位再向左平移2個單位的圖象的函數(shù)表達式;
(3)經(jīng)過原點O的直線l與⊙O相切,求直線l的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《一次函數(shù)》(08)(解析版) 題型:解答題

(2006•茂名)已知:半徑為1的⊙O1與x軸交于A、B兩點,圓心O1的坐標為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A、B兩點,其頂點為F.
(1)求b、c的值及二次函數(shù)頂點F的坐標;
(2)寫出將二次函數(shù)y=-x2+bx+c的圖象向下平移1個單位再向左平移2個單位的圖象的函數(shù)表達式;
(3)經(jīng)過原點O的直線l與⊙O相切,求直線l的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣東省茂名市中考數(shù)學試卷(解析版) 題型:解答題

(2006•茂名)已知:半徑為1的⊙O1與x軸交于A、B兩點,圓心O1的坐標為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A、B兩點,其頂點為F.
(1)求b、c的值及二次函數(shù)頂點F的坐標;
(2)寫出將二次函數(shù)y=-x2+bx+c的圖象向下平移1個單位再向左平移2個單位的圖象的函數(shù)表達式;
(3)經(jīng)過原點O的直線l與⊙O相切,求直線l的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣東省茂名市中考數(shù)學試卷(解析版) 題型:解答題

(2006•茂名)如圖,李華晚上在路燈下散步.已知李華的身高AB=h,燈柱的高OP=O′P′=l,兩燈柱之間的距離OO′=m.
(1)若李華距燈柱OP的水平距離OA=a,求他影子AC的長;
(2)若李華在兩路燈之間行走,則他前后的兩個影子的長度之和(DA+AC)是否是定值請說明理由;
(3)若李華在點A朝著影子(如圖箭頭)的方向以v1勻速行走,試求他影子的頂端在地面上移動的速度v2

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣東省茂名市中考數(shù)學試卷(解析版) 題型:解答題

(2006•茂名)為了鼓勵居民節(jié)約用水,我市某地水費按下表規(guī)定收取:
每戶每月用水量不超過10噸(含10噸)超過10噸的部分
水費單價1.30元/噸2.00元/噸
(1)若某戶用水量為x噸,需付水費為y元,求水費y(元)與用水量x(噸)之間的函數(shù)關系式;
(2)若小華家四月份付水費17元,問他家四月份用水多少噸?
(3)已知某住宅小區(qū)100戶居民五月份交水費共1682元,且該月每戶用水量均不超過15噸(含15噸),求該月用水量不超過10噸的居民最多可能有多少戶?

查看答案和解析>>

同步練習冊答案