【題目】如圖所示,四邊形為正方形,為上一點,將正方形折疊,使點與點重合,折痕為,與相交于點,若,.求:
(1)的面積;
(2)的值.
【答案】(1);(2)
【解析】
(1)先由tan∠AEN=,DC+CE=10可得出BE=AB,再由翻折變換的性質(zhì)得出∠AEN=∠EAN,所以可以先設(shè)BE=a,從而求出AB=3a,CE=2a進而求出a的值, 由a的值可得出AB=6,CE=4.求出底AD的長,然后再由tan∠AEN與邊的關(guān)系,求出高,最后利用面積公式求面積;
(2)sin∠ENB的值用正弦定義求即可.
解:(1)由折疊可知:MN為AE的垂直平分線,
∴AN=EN,
∴∠EAN=∠AEN(等邊對等角),
∴tan∠AEN=tan∠EAN=,
∴設(shè)BE=a,AB=3a,則CE=2a,
∵DC+CE=10,
∴3a+2a=10,
∴a=2,
設(shè)MN與AE交于點G,
∵由(1)知a=2,
∴AB=6,CE=4,
∵AE= ,
∴EG=AE=×2=,
又∵ ,
∴NG=,
∴AN= ,
∴AN=NE=,
∴S△ANE= ;
(2)∵Rt△ENB中,EB=2,NE=,
∴sin∠ENB= =.
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù) y=的圖象如圖所示,則二次函數(shù) y =ax 2-2x和一次函數(shù) y=bx+a 在同一平面直角坐標系中的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(h為常數(shù)),在自變量的值滿足的情況下,與其對應(yīng)的函數(shù)值的最大值為0,則的值為( )
A. 和B. 和C. 和D. 和
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在矩形ABCD中,AB=4,BC=6,點E為線段AB上一動點(不與點A. 點B重合),先將矩形ABCD沿CE折疊,使點B落在點F處,CF交AD于點H.
(1)求證:△AEG∽△DHC;
(2)若折疊過程中,CF與AD的交點H恰好是AD的中點時,求tan∠BEC的值;
(3)若折疊后,點B的對應(yīng)F落在矩形ABCD的對稱軸上,求此時AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與軸交點恰好是二次函數(shù)與的其中一個交點,已知二次函數(shù)圖象的對稱軸為,并與軸的交點為.
(1)求二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)與一次函數(shù)的另一個交點為點,連接,求三角形的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,二次函數(shù) y=x2+2x+2k﹣2 的圖象與 x 軸有兩個交點.
(1)求 k 的取值范圍;
(2)當 k 取正整數(shù)時,請你寫出二次函數(shù) y=x2+2x+2k﹣2 的表達式,并求出此二次函數(shù)圖象與 x 軸的兩個交點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F,AB=6cm,AD=8cm.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過點D作DG∥BE,交BC于點G,連結(jié)FG交BD于點O.判斷四邊形FBGD的形狀,并說明理由.
(3)在(2)的條件下,求FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2 + 1=0.
(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;
(2)若方程兩實數(shù)根分別為x1,x2,且滿足,求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】阿波羅尼奧斯(Apollonius of Perga,約公元前262-190年),古希臘數(shù)學家,與歐幾里得,阿基米德齊名,他的著作《圓錐曲線論》是古代世界光輝的科學成果.
材料:《圓錐曲線論》里面對拋物線的定義:平面內(nèi)一個動點到一個定點與一條定直線的距離之比等于1,或者說:平面內(nèi)一動點到一定點與一條直線的距離相等的軌跡就是拋物線.
問題:已知點,,直線,連接,若點到直線的距離與的長相等,請求出與的關(guān)系式.
解:如圖,∵,,
∴
∵,直線,
∴點到直線的距離為
∵點到直線的距離與的長相等,
∴,
平方化簡得,.
若將上述問題中點坐標改為,直線變?yōu)?/span>,按照問題解題思路,試求出與的關(guān)系式,并在平面直角坐標系中利用描點法畫出其圖象,你能發(fā)現(xiàn)什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com