【題目】如圖所示,將一副三角板擺放在一起,組成四邊形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,連接BD,則tan∠CBD的值為_____.
【答案】
【解析】
如圖所示,連接BD,過點(diǎn)D作DE垂直于BC的延長(zhǎng)線于點(diǎn)E,構(gòu)造直角三角形,將∠CBD置于直角三角形中,設(shè)CE為x,根據(jù)特殊直角三角形分別求得線段CD、AC、BC,從而按正切函數(shù)的定義可解.
解:如圖所示,連接BD,過點(diǎn)D作DE垂直于BC的延長(zhǎng)線于點(diǎn)E,
∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°
∴∠DCE=45°,
∵DE⊥CE
∴∠CEB=90°,∠CDE=45°
∴設(shè)DE=CE=x,則CD=x,
在Rt△ACD中,
∵∠CAD=30°,
∴tan∠CAD==,
則AC=,
在Rt△ABC中,∠BAC=∠BCA=45°
∴BC=x,
∴在Rt△BED中,tan∠CBD===
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我們可以將x2﹣1視為一個(gè)整體,然后設(shè)x2﹣1=y,則
(x2﹣1)=y2,原方程化為y2﹣5y+4=0.①
解得y1=1,y2=4
當(dāng)y=1時(shí),x2﹣1=1.∴x2=2.∴x=±;
當(dāng)y=4時(shí),x2﹣1=4,∴x2=5,∴x=±.
∴原方程的解為x1=,x2=﹣,x3=,x4=﹣
解答問題:
(1)填空:在由原方程得到方程①的過程中,利用 法達(dá)到了降次的目的,體現(xiàn)了 的數(shù)學(xué)思想.
(2)解方程:x4﹣x2﹣6=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)如AF=3,AG=5,求△ADE與△ABC的周長(zhǎng)之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司對(duì)自家辦公大樓一塊米的正方形墻面進(jìn)行了如圖所示的設(shè)計(jì)裝修(四周陰影部分是八個(gè)全等的矩形,用材料甲裝修;中心區(qū)是正方形,用材料乙裝修). 兩種材料的成本如下表:
材料 | 甲 | 乙 |
價(jià)格(元/米2) | 550 | 500 |
設(shè)矩形的較短邊的長(zhǎng)為米,裝修材料的總費(fèi)用為元.
(1)計(jì)算中心區(qū)的邊的長(zhǎng)(用含的代數(shù)式表示);
(2)求關(guān)于的函數(shù)解析式;
(3)當(dāng)中心區(qū)的邊長(zhǎng)不小于2米時(shí),預(yù)備材料的購(gòu)買資金32000元夠用嗎?請(qǐng)利用函數(shù)的增減性來說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點(diǎn),作DE⊥AC,交AB的延長(zhǎng)線于點(diǎn)F,連接DA.
(1)求證:EF為半圓O的切線;
(2)若DA=DF=6,求陰影區(qū)域的面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是垂直于水平面的一棵樹,小馬(身高1.70米)從點(diǎn)A出發(fā),先沿水平方向向左走2米到達(dá)P點(diǎn)處,在P處測(cè)得大樹的頂端M的仰角為37°,再沿水平方向向左走8米到B點(diǎn),再經(jīng)過一段坡度i=4:3,坡長(zhǎng)為5米的斜坡BC到達(dá)C點(diǎn),然后再沿水平方向向左行走5米到達(dá)N點(diǎn)(A、B、C、N在同一平面內(nèi)),則大樹MN的高度約為( 。▍⒖紨(shù)據(jù):tan37°≈0.75,sin37°≈0.60)
A.7.8米B.9.7米C.12米D.13.7米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】萬州蘇寧電器某品牌洗衣機(jī)銷售情況良好,2018年11月份初該洗衣機(jī)每臺(tái)的進(jìn)價(jià)為2280元,購(gòu)進(jìn)了600臺(tái)該品牌洗衣機(jī).
(1)如果該商場(chǎng)為了減小庫存壓力,想把購(gòu)進(jìn)的600臺(tái)該品牌洗衣機(jī)在11月底全部銷售完,商場(chǎng)決定利用打折來促銷,每臺(tái)洗衣機(jī)在標(biāo)價(jià)的基礎(chǔ)上打8折,這樣很快銷售一空.要使該商場(chǎng)獲得利潤(rùn)不低于72000元,則每臺(tái)洗衣機(jī)的標(biāo)價(jià)應(yīng)不低于多少元?
(2)該商場(chǎng)決定12月初繼續(xù)購(gòu)進(jìn)600臺(tái)該品牌洗衣機(jī)銷售,據(jù)悉,2018年12月份因全國(guó)經(jīng)濟(jì)出現(xiàn)通貨膨脹,商品價(jià)格進(jìn)一步上漲,商場(chǎng)決定該品牌洗衣機(jī)的銷售價(jià)格比(1)中的最低標(biāo)價(jià)上漲m%,但實(shí)際銷售量比11月份下降了m%,如果11月份就按(1)中的最低標(biāo)價(jià)進(jìn)行銷售,且也全部銷售完,這樣萬州蘇寧電器12月份的銷售額與11月份的銷售額持平,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,已知∠BAC=90°,AB=6,AC=8,點(diǎn)D是AC上的一點(diǎn),將△ABC沿著過點(diǎn)D的一條直線翻折,使點(diǎn)C落在BC邊上的點(diǎn)E處,連接AE、DE,當(dāng)∠CDE=∠AEB時(shí),AE的長(zhǎng)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD是高,BE平分∠ABC.BE分別與AC,CD相交于點(diǎn)E,F.
(1)求證:△AEB~△CFB;
(2)若AE=2EC,BC=6.求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com