【題目】如圖,在四邊形ABCD中,ADBC,E為CD的中點(diǎn),連接AE、BE,BEAE,延長AE交BC的延長線于點(diǎn)F求證:

1FC=AD;

2AB=BC+AD

【答案】證明見解析

【解析】

試題分析:1根據(jù)ADBC可知ADC=ECF,再根據(jù)E是CD的中點(diǎn)可求出ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答

2根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可

試題解析:證明:1ADBC已知

∴∠ADC=ECF兩直線平行,內(nèi)錯(cuò)角相等

E是CD的中點(diǎn)已知,

DE=EC中點(diǎn)的定義

ADE與FCE中,

∴△ADE≌△FCEASA,

FC=AD全等三角形的性質(zhì)

2∵△ADE≌△FCE,

AE=EF,AD=CF全等三角形的對(duì)應(yīng)邊相等,

BE是線段AF的垂直平分線,

AB=BF=BC+CF,

AD=CF已證,

AB=BC+AD等量代換

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:

(1)如果∠1=∠B,那么______________,根據(jù)是__________________________

(2)如果∠3=∠D,那么______________,根據(jù)是__________________________;

(3)如果要使BE∥DF,必須∠1=∠_______,根據(jù)是_________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小華在一起玩數(shù)字游戲,他們每人取了一張數(shù)字卡片,拼成了一個(gè)兩位數(shù). 小明說:哇!這個(gè)兩位數(shù)的十位數(shù)字與個(gè)位數(shù)字之和恰好是9.”他們又把這兩張卡片對(duì)調(diào),得到了一個(gè)新的兩位數(shù),小華說:這個(gè)兩位數(shù)恰好比原來的兩位數(shù)大9.”那么,你能回答以下問題嗎?

他們?nèi)〕龅膬蓮埧ㄆ系臄?shù)字分別是多少?

第一次,他們拼成的兩位數(shù)是多少?

第二次,他們拼成的兩位數(shù)又是多少呢?請(qǐng)你好好動(dòng)動(dòng)腦筋喲!

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是直線AB上一點(diǎn),∠BOC=120°OD平分∠AOC

(1)求∠COD的度數(shù).

請(qǐng)你補(bǔ)全下列解題過程.

∵點(diǎn)O為直線AB上一點(diǎn),

∴∠AOB=_____

∵∠BOC =120°

∴∠AOC=______

OD 平分∠AOC,

∴∠COD=AOC( )

∴∠COD=________

(2)E是直線AB外一點(diǎn),滿足∠COE:∠BOE=41直接寫出∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C(0,﹣3),對(duì)稱軸是直線x=1,直線BC與拋物線的對(duì)稱軸交于點(diǎn)D.

(1)求拋物線的函數(shù)表達(dá)式;
(2)求直線BC的函數(shù)表達(dá)式;
(3)點(diǎn)E為y軸上一動(dòng)點(diǎn),CE的垂直平分線交CE于點(diǎn)F,交拋物線于P、Q兩點(diǎn),且點(diǎn)P在第三象限.
①當(dāng)線段PQ= AB時(shí),求tan∠CED的值;
②當(dāng)以點(diǎn)C、D、E為頂點(diǎn)的三角形是直角三角形時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
溫馨提示:考生可以根據(jù)第(3)問的題意,在圖中補(bǔ)出圖形,以便作答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】證明:如果兩個(gè)三角形中有兩條邊和其中一邊上的中線對(duì)應(yīng)相等,那么這兩個(gè)三角形全等.(寫出已知,求證,畫出圖形并證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1先化簡,再求值 xx1+2xx+1)﹣(3x1)(2x5),其中 x=2

2)解方程(3x2)(2x3=6x+5)(x1+15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點(diǎn),且DE=DF,連結(jié)BF,CE.下列說法:①△ABD和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O為直線AB上一點(diǎn),OC平分∠AOD,∠BOD=3DOE,∠COE=則∠BOE的度數(shù)是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案