【題目】如圖,BD為□ABCD的對角線,按要求完成下列各題.
(1)用直尺和圓規(guī)作出對角線BD的垂直平分線交AD于點E,交BC于點F,垂足為O.(保留作圖痕跡,不要求寫作法)
(2)在(1)的基礎(chǔ)上,連接BE和DF.求證:四邊形BFDE是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1:,點P、H、B、C、A在同一個平面上.點H、B、C在同一條直線上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于 度;
(2)求山坡A、B兩點間的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生參加體育活動的情況,學(xué)校對學(xué)生進(jìn)行隨機抽樣調(diào)查,其中一個問題是“你平均每天參加體育活動的時間是多少”,共有4個選項:A 1.5小時以上;B 1~1.5小時;C 0.5~1小時;D 0.5小時以下.圖1、2是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)本次一共調(diào)查了多少名學(xué)生?
(2)在圖1中將選項B的部分補充完整;
(3)若該校有3000名學(xué)生,你估計全?赡苡卸嗌倜麑W(xué)生平均每天參加體育活動的時間在0.5小時以下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,拋物線經(jīng)過
A(-1,0)、B(0,3)兩點,與軸交于另一點C,頂點為D.
(1)求該拋物線的解析式及點C、D的坐標(biāo);
(2)經(jīng)過點B、D兩點的直線與軸交于點E,若點F是拋物線上一點,以A、B、E、F為頂點的四邊形是平行四邊形,求點F的坐標(biāo);
(3)如圖(2)P(2,3)是拋物線上的點,Q是直線AP上方的拋物線上一動點,求△APQ的最大面積和此時Q點的坐標(biāo).
圖(1) 圖(2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在線段AB上,點M、N分別是AC、BC的中點.
(1)若AC=8cm,CB=6cm,求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=a,其它條件不變,你能猜想MN的長度嗎?寫出你的結(jié)論并說明理由;
(3)若C為直線AB上線段AB之外的任一點,且AC=m,CB=n,則線段MN的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,∠AOB、∠COD都是直角.
(1)試猜想∠AOD與∠COB在數(shù)量上是相等,互余,還是互補的關(guān)系.請你用推理的方法說明你的猜想是合理的.
(2)當(dāng)∠COD繞著點O旋轉(zhuǎn)到圖(2)所示位置時,你在(1)中的猜想還成立嗎?請你證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+m(m>0)的圖像與x軸、y軸分別交于點A、B,點C在線段OA上,點C的橫坐標(biāo)為n,點D在線段AB上,且AD=2BD,將△ACD繞點D旋轉(zhuǎn)180°后得到△A1C1D.
(1)若點C1恰好落在y軸上,試求的值;
(2)當(dāng)n=4時,若△A1C1D被y軸分得兩部分圖形的面積比為3:5,求該一次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com