【題目】如圖,△ABC 頂點的坐標分別為 A (1,-1)、B(3,-1)、C(4,1).

⑴將△ABC向上平移1個單位,再向左平移1個單位,請畫出平移后得到的△A1B1C1并寫出點 A1、B1C1 的坐標;

⑵若△A1B1C1 與△A1B1D 全等(D 點與 C1 不重合),直接寫出點D的坐標.

【答案】(1)畫圖略,A1(0,0)、B1(2,0)、C1(3,2);(2)D(-1,2)或(-1,-2)或(3,-2)

【解析】

(1)根據(jù)關于平移的點的坐標特點畫出△A1B1C1,寫出各點的坐標即可;

(2)利用全等三角形的判定方法,寫出D點坐標即可.

解:(1)如圖所示:△A1B1C1,即為所求,

A1(0,0)、B1(2,0)、C1(3,2)

(2)D(-1,2)或(-1,-2)或(3,-2)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知實數(shù)ab、c滿足ababc,有下列結論:

c≠0,則;a3,則bc9

abc,則abc0;a、b、c中只有兩個數(shù)相等,則abc8

其中正確的是 (把所有正確結論的序號都選上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中建立如圖所示的平面直角坐標系,已知格點三角形ABC(三角形的三個頂點都在小正方形的頂點上).

(1)寫出△ABC的面積:_______.

(2)畫出△ABC關于y軸對稱的△A1B1C1.

(3)寫出點B及其對稱點B1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,CD是∠ACB的角平分線,CEAB邊上的高,

1)若∠A=40°,∠B=60°,求∠DCE的度數(shù).

2)若∠A=m,∠B=n,求∠DCE.(用mn表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AD⊥BC于D,若BD=AD,F(xiàn)D=CD.

(1)求證:∠FBD=∠CAD;

(2)求證:BE⊥AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,直線l經過A(4,0)和B(0,4)兩點,拋物線y=a(x﹣h)2的頂點為P(1,0),直線l與拋物線的交點為M.

(1)求直線l的函數(shù)解析式;
(2)若SAMP=3,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AE=AB,AF=AC.試判斷線段EC與BF的關系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖1,AB⊥BDB,ED⊥BDD,點C在直線BD上且與F重合,AC=EF,BC=DE .

(1)請說明△ABC≌△FDE,并判斷AC是否垂直FE?

(2)若將△ABC 沿BD方向平移至如圖2的位置時,且其余條件不變,則AC是否垂直FE?請說明為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 閱讀理解我們知道在直角三角形中,有無數(shù)組勾股數(shù)例如:5、12、13;9、40、41;……但其中也有一些特殊的勾股數(shù),例如:3、4、5;是三個連續(xù)正整數(shù)組成的勾股數(shù).

解決問題:① 在無數(shù)組勾股數(shù)中,是否存在三個連續(xù)偶數(shù)能組成勾股數(shù)?

答: ,若存在,試寫出一組勾股數(shù): .

在無數(shù)組勾股數(shù)中,是否還存在其它的三個連續(xù)正整數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.

在無數(shù)組勾股數(shù)中,是否存在三個連續(xù)奇數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.

探索升華:是否存在銳角ABC三邊也為連續(xù)正整數(shù);且同時還滿足:∠BCAABC=2BAC?若存在,求出ABC三邊的長;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案