【題目】某港口位于東西方向的海岸線上.遠(yuǎn)航號(hào)、海天號(hào)輪船同時(shí)離開港口,各自沿一固定方向航行,遠(yuǎn)航號(hào)每小時(shí)航行16海里,海天號(hào)每小時(shí)航行12海里.它們離開港口一個(gè)半小時(shí)后相距30海里.如果知道遠(yuǎn)航號(hào)沿東北方向航行,能知道海天號(hào)沿哪個(gè)方向航行?為什么?

【答案】“海天”號(hào)沿西北方向航行

【解析】試題根據(jù)路程=速度×?xí)r間分別求得PQ、PR的長(zhǎng),再進(jìn)一步根據(jù)勾股定理的逆定理可以證明三角形PQR是直角三角形,從而求解.

試題解析:根據(jù)題意,得

PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).

∵242+182=302

即PQ2+PR2=QR2 ,

∴∠QPR=90°.

由“遠(yuǎn)航號(hào)”沿東北方向航行可知,∠QPS=45°,則∠SPR=45°,即“海天”號(hào)沿西北方向航行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A、B表示的數(shù)分別是-4、8(A、B兩點(diǎn)間的距離用AB表示),點(diǎn)M、N是數(shù)軸上兩個(gè)動(dòng)點(diǎn),分別表示數(shù)m、n

(1) AB=______個(gè)單位長(zhǎng)度;若點(diǎn)MA、B之間,則|m+4|+|m-8|=___________

(2) |m+4|+|m-8|=20,求m的值

(3) 若點(diǎn)M、點(diǎn)N既滿足|m+4|+n=6,也滿足|n-8|+m=28,則m=________;n=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的情況(記向東為正)記錄如下(x>5x<14,單位:m):

行駛次數(shù)

第一次

第二次

第三次

第四次

行駛情況

x

x

x﹣3

2(5﹣x)

行駛方向(填西”)

   

   

   

   

(1)請(qǐng)將表格補(bǔ)充完整;

(2)求經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置;

(3)若出租車行駛的總路程為41m,求第一次行駛的路程x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(﹣1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)C在x軸的正半軸上.

(1)求該拋物線的函數(shù)關(guān)系表達(dá)式.
(2)點(diǎn)F為線段AC上一動(dòng)點(diǎn),過F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為E、G,當(dāng)四邊形OEFG為正方形時(shí),求出F點(diǎn)的坐標(biāo).
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雞兔同籠問題是我國(guó)古代著名趣題之一,大約在 1500 年前,《孫子算經(jīng)》中就記載了這個(gè)有趣的問題.書中是這樣敘述的:今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?這四句話的意思是:有若干只雞、兔同在一個(gè)籠子里,從上上面數(shù),有 35 個(gè)頭;從下面數(shù),有 94 只腳 .求籠中各有幾只雞和兔?經(jīng)計(jì)算可得( )

A. 20 只,兔 15 B. 12 只,兔 23

C. 15 只,兔 20 D. 23 只,兔 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ABC=45°,CDABD,BE平分∠ABC,且BEACE,與CD相交于點(diǎn)F,DHBCH,交BEG,下列結(jié)論中正確的是(  )

①△BCD為等腰三角形;②BF=AC;CE=BF;BH=CE.

A. ①② B. ①③ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級(jí)班想買一些運(yùn)動(dòng)器材供班上同學(xué)陽光體育活動(dòng)使用班主任安排班長(zhǎng)去商店買籃球和排球,下面是班長(zhǎng)與售貨員的對(duì)話:

班長(zhǎng)阿姨您好! 售貨員同學(xué),你好想買點(diǎn)什么?

根據(jù)這段對(duì)話你能算出籃球和排球的單價(jià)各是多少嗎?

六一兒童節(jié)店里搞活動(dòng)有兩種套餐,1、套裝打折:五個(gè)籃球和五個(gè)排球?yàn)橐惶籽b,套裝打 八折:2、滿減活動(dòng):999 100,1999 200;兩種活動(dòng)不重復(fù)參與,學(xué)校需要 15個(gè)籃球,13 個(gè)排球作為獎(jiǎng)品,請(qǐng)問如何安排購(gòu)買更劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有20箱橘子,以每箱25千克為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差值

(單位:千克)

3

2

1.5

0

1

2.5

箱數(shù)

1

4

2

3

2

8

(1)20箱橘子中,最重的一箱比最輕的一箱多重多少千克?

(2)與標(biāo)準(zhǔn)重量比較,20箱橘子總計(jì)超過或不足多少千克?

(3)若橘子每千克售價(jià)2.5元,則出售這20箱橘子可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一塊木板如圖所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面積為( 。

A. 60 B. 30 C. 24 D. 12

查看答案和解析>>

同步練習(xí)冊(cè)答案