【題目】報社需要在40分鐘內(nèi)將一篇緊急宣傳文稿輸入電腦.已知獨立完成此項任務(wù),小王需要50分鐘,小李只需要30分鐘.小王獨自輸入了30分鐘后,因為急于完成任務(wù),請求小李幫助他(求助時間忽略不計),他們能在要求的時間內(nèi)完成任務(wù)嗎?請說明理由.
【答案】他們能在要求的時間內(nèi)完成任務(wù),理由見解析.
【解析】
設(shè)還需x分鐘完成任務(wù),設(shè)任務(wù)量為單位1,根據(jù)題干,等量關(guān)系式為:小王前30分鐘和后x分鐘完成的工作量+小李x分鐘完成的工作量=1,根據(jù)等量關(guān)系式列寫方程.
他們能在要求的時間內(nèi)完成任務(wù).理由如下:
設(shè)小李加入后輸入了分鐘完成任務(wù),
根據(jù)題意得:,
解這個方程得:,
(分鐘)
所以從小王開始輸入到任務(wù)完成共用時37.5分鐘,
37.5分鐘40分鐘,
他們能在要求的時間內(nèi)完成任務(wù).
答:他們能在要求的時間內(nèi)完成任務(wù)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延長線于點E.
(1)求證:∠BCA=∠BAD;
(2)求DE的長;
(3)求證:BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:不等式 ≤2+x
(1)解該不等式,并把它的解集表示在數(shù)軸上;
(2)若實數(shù)a滿足a>2,說明a是否是該不等式的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長AB=4,分別以點A、B為圓心,AB長為半徑畫弧,兩弧交于點E,則 的長是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=kx2﹣7x﹣7的圖象與x軸有兩個交點,則k的取值范圍為( )
A.k>
B.k> 且k≠0
C.
D. 且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠ABC的平分線交AD于點E,延長BE交CD的延長線于F.
(1)若∠F=20°,求∠A的度數(shù);
(2)若AB=5,BC=8,CE⊥AD,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=90°,D為AC延長線上一點,連接BD,在BC邊上取一點E,使得CD=CE,連接AE并延長交BD于點F.
(1)依題意補全圖形;
(2)求證:AF⊥BD;
(3)連接CF,點C 關(guān)于BD的對稱點是Q,連接FQ,用等式表示線段CF,CQ之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)問t滿足什么條件時,△BCP為直角三角形?
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當(dāng)P、Q中有一點到達(dá)終點時,另一點也停止運動.當(dāng)t為何值時,直線PQ把△ABC的周長分成相等的兩部分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板的一條直角邊在同一條直線上,則∠1的度數(shù)為( )
A.75°
B.65°
C.45°
D.30°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com