如圖,點(diǎn)O是邊為2的正方形ABCD的中心,點(diǎn)E從A點(diǎn)開始沿AD邊運(yùn)動(dòng),點(diǎn)F從D點(diǎn)開始沿DC邊運(yùn)動(dòng),精英家教網(wǎng)并且AE=DF.
(1)求正方形ABCD的對(duì)角線AC的長;
(2)若點(diǎn)E、F同時(shí)運(yùn)動(dòng),連接OE、OF,請(qǐng)你探究:四邊形DEOF的面積S與正方形ABCD的面積關(guān)系,并求出四邊形DEOF的面積S;
(3)在(2)的基礎(chǔ)上,設(shè)AE=x,△EOF的面積為y,y與x之間的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并利用圖象說明當(dāng)x在什么范圍時(shí),y≥
58
分析:(1)可根據(jù)勾股定理得出AC的長.
(2)連接OD,先證△AEO≌△DFO,然后得出S△OFD=S△AEO,因此四邊形DEOF的面積就轉(zhuǎn)化為三角形AOD的面積.三角形AOD的面積是正方形的
1
4
,由此可求出S的值.
(3)由(2)得出的四邊形BEOF的面積,那么y=1-S△DEF=然后用x表示出三角形DEF的面積,即可得出函數(shù)式.
解答:精英家教網(wǎng)解:(1)在直角三角形ABC中
AC=
AB2+BC2
=2
2


(2)連接OD,
∵OA=OD,AE=DF,∠ODC=∠OAD=45°
∴△AEO≌△DFO
∴S△OFD=S△AEO則S四邊形DEOF=S△ADO
又S△ADO=
1
4
S四邊形ABCD
∴S四邊形DEOF=
1
4
S四邊形ABCD=1.精英家教網(wǎng)

(3)由(2)得:y=1-S△DEF=1-
1
2
x(2-x)=
1
2
x2-x+1
且0≤x≤2
配方得:y=
1
2
(x-1)2+
1
2

畫圖:
y=
5
8
時(shí),
1
2
(x-1)2+
1
2
=
5
8

∴x1=
1
2
,x2=
3
2

由圖象可知:當(dāng)0≤x≤
1
2
時(shí),或
3
2
≤x≤2時(shí)y≥
5
8
點(diǎn)評(píng):本題主要考查了正方形的性質(zhì)和二次函數(shù)的綜合應(yīng)用,本題中利用全等三角形來轉(zhuǎn)化面積是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•本溪)如圖,點(diǎn)B1是面積為1的等邊△OBA的兩條中線的交點(diǎn),以O(shè)B1為一邊,構(gòu)造等邊△OB1A1(點(diǎn)O,B1,A1按逆時(shí)針方向排列),稱為第一次構(gòu)造;點(diǎn)B2是△OB1A1的兩條中線的交點(diǎn),再以O(shè)B2為一邊,構(gòu)造等邊△OB2A2(點(diǎn)O,B2,A2按逆時(shí)針方向排列),稱為第二次構(gòu)造;以此類推,當(dāng)?shù)趎次構(gòu)造出的等邊△OBnAn的邊OAn與等邊△OBA的邊OB第一次重合時(shí),構(gòu)造停止.則構(gòu)造出的最后一個(gè)三角形的面積是
1
310
1
310

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(遼寧本溪卷)數(shù)學(xué)(解析版) 題型:填空題

如圖,點(diǎn)B1是面積為1的等邊△OBA的兩條中線的交點(diǎn),以O(shè)B1為一邊,構(gòu)造等邊△OB1A1(點(diǎn)O,B1,A1按逆時(shí)針方向排列),稱為第一次構(gòu)造;點(diǎn)B2是△OBA的兩條中線的交點(diǎn),再以O(shè)B2為一邊,構(gòu)造等邊△OB2A2(點(diǎn)O,B2,A2按逆時(shí)針方向排列),稱為第二次構(gòu)造;以此類推,當(dāng)?shù)趎次構(gòu)造出的等邊△OBnAn的邊OAn與等邊△OBA的邊OB第一次重合時(shí),構(gòu)造停止.則構(gòu)造出的最后一個(gè)三角形的面積是     

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,點(diǎn)O是邊為2的正方形ABCD的中心,點(diǎn)E從A點(diǎn)開始沿AD邊運(yùn)動(dòng),點(diǎn)F從D點(diǎn)開始沿DC邊運(yùn)動(dòng),并且AE=DF.
(1)求正方形ABCD的對(duì)角線AC的長;
(2)若點(diǎn)E、F同時(shí)運(yùn)動(dòng),連接OE、OF,請(qǐng)你探究:四邊形DEOF的面積S與正方形ABCD的面積關(guān)系,并求出四邊形DEOF的面積S;
(3)在(2)的基礎(chǔ)上,設(shè)AE=x,△EOF的面積為y,y與x之間的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并利用圖象說明當(dāng)x在什么范圍時(shí),y≥數(shù)學(xué)公式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年福建省泉州市惠安縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•惠安縣質(zhì)檢)如圖,點(diǎn)O是邊為2的正方形ABCD的中心,點(diǎn)E從A點(diǎn)開始沿AD邊運(yùn)動(dòng),點(diǎn)F從D點(diǎn)開始沿DC邊運(yùn)動(dòng),并且AE=DF.
(1)求正方形ABCD的對(duì)角線AC的長;
(2)若點(diǎn)E、F同時(shí)運(yùn)動(dòng),連接OE、OF,請(qǐng)你探究:四邊形DEOF的面積S與正方形ABCD的面積關(guān)系,并求出四邊形DEOF的面積S;
(3)在(2)的基礎(chǔ)上,設(shè)AE=x,△EOF的面積為y,y與x之間的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并利用圖象說明當(dāng)x在什么范圍時(shí),y≥

查看答案和解析>>

同步練習(xí)冊(cè)答案