【題目】如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)根據(jù)線段垂直平分線的性質(zhì),可得AF=CF,再根據(jù)等角的余角相等可得∠B=∠BAF,所以AF=BF.
(2)由AAS可證△AEG≌△CEF,所以AG=CF.由一組對邊平行且相等的四邊形是平行四邊形得四邊形AFCG是平行四邊形,進而證得四邊形AFCG是菱形,最后根據(jù)有一個角為直角的菱形是正方形得證四邊形AFCG是正方形.
證明 (1)∵AD=CD,點E是邊AC的中點,
∴DE⊥AC.
即得DE是線段AC的垂直平分線.
∴AF=CF.
∴∠FAC=∠ACB.
在Rt△ABC中,由∠BAC=90°,
得∠B+∠ACB=90°,∠FAC+∠BAF=90°.
∴∠B=∠BAF.
∴AF=BF.
(2)∵AG∥CF,
∴∠AGE=∠CFE.
又∵點E是邊AC的中點,
∴AE=CE.
在△AEG和△CEF中,
∴△AEG≌△CEF(AAS).
∴AG=CF.
又∵AG∥CF,
∴四邊形AFCG是平行四邊形.
∵AF=CF,
∴四邊形AFCG是菱形.
在Rt△ABC中,由AF=CF,AF=BF,得BF=CF.
即得點F是邊BC的中點.
又∵AB=AC,
∴AF⊥BC.即得∠AFC=90°.
∴四邊形AFCG是正方形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)至按照一定規(guī)律排成下表:
…… |
記表示第行第個數(shù),如表示第行第個數(shù)是.
(1)直接寫出_______________,_______________;
(2)①如果,那么_________________,________;②用,表示__________;
(3)將表格中的個陰影格子看成一個整體并平移,所覆蓋的個數(shù)之和能否等于.若能,求出這個數(shù)中的最小數(shù),若不能說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)求函數(shù)圖象的對稱軸、頂點坐標(biāo)、與坐標(biāo)軸交點的坐標(biāo),并畫出函數(shù)的大致圖象;
(2)根據(jù)圖象直接寫出函數(shù)值y為負(fù)數(shù)時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某窗戶的形狀如圖所示(圖中長度單位:cm),其中上部是半徑為xcm的半圓形,下部是寬為ycm的長方形.
(1)用含x,y的式子表示窗戶的面積S;
(2)當(dāng)x=40,y=120時,求窗戶的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這是某市部分簡圖,為了確定各建筑物的位置:
(1)請你以火車站為原點建立平面直角坐標(biāo)系,若以小方格的邊長為單位長度,寫出市場的坐標(biāo)為_______;超市的坐標(biāo)為_____________.
(2)請將體育場為A、賓館為C和火車站為B看作三點用線段連起來,得△ABC,然后將△ABC向下平移4個單位長度,畫出平移后的,寫出的坐標(biāo).
(3)求出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AE平分∠BAC,BE⊥AE于點E,點F是BC的中點.
(1)如圖1,BE的延長線與AC邊相交于點D,求證:EF=(AC﹣AB);
(2)如圖2,請直接寫出線段AB、AC、EF之間的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?
(2)根據(jù)健民體育活動中心消費者的需求量,活動中心決定用不超過2625元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將點A先向右平移3個單位長度,在向下平移5個單位長度,得到A’;將點B先向下平移5個單位長度,再向右平移4個單位長度,得到B’,則A’與B’相距( )
A. 4個單位長度 B. 5個單位長度 C. 6個單位長度 D. 7個單位長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(﹣7,1),B(1,1),C(1,7).線段DE的端點坐標(biāo)是D(7,﹣1),E(﹣1,﹣7).
(1)試說明如何平移線段AC,使其與線段ED重合;
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn),使AC的對應(yīng)邊為DE,請直接寫出點B的對應(yīng)點F的坐標(biāo);
(3)畫出(2)中的△DEF,并和△ABC同時繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com