【題目】如圖,在正方形ABCD中,M、N分別是射線CB和射線DC上的動點,且始終∠MAN45°

1)如圖1,當(dāng)點MN分別在線段BC、DC上時,請直接寫出線段BMMN、DN之間的數(shù)量關(guān)系;

2)如圖2,當(dāng)點M、N分別在CB、DC的延長線上時,(1)中的結(jié)論是否仍然成立,若成立,給予證明,若不成立,寫出正確的結(jié)論,并證明;

3)如圖3,當(dāng)點M、N分別在CBDC的延長線上時,若CNCD6,設(shè)BDAM的延長線交于點P,交ANQ,直接寫出AQ、AP的長.

【答案】1BM+DNMN;(2)(1)中的結(jié)論不成立,DNBMMN.理由見解析;(3APAM+PM3

【解析】

1)在MB的延長線上,截取BE=DN,連接AE,則可證明△ABE≌△ADN,得到AE=AN,進(jìn)一步證明△AEM≌△ANM,得出ME=MN,得出BM+DN=MN
2)在DC上截取DF=BM,連接AF,可先證明△ABM≌△ADF,得出AM=AF,進(jìn)一步證明△MAN≌△FAN,可得到MN=NF,從而可得到DN-BM=MN;
3)由已知得出DN=12,由勾股定理得出AN6 ,由平行線得出△ABQ∽△NDQ,得出,∴,求出AQ=2 ;由(2)得出DN-BM=MN.設(shè)BM=x,則MN=12-xCM=6+x,在RtCMN中,由勾股定理得出方程,解方程得出BM=2,由勾股定理得出AM=,由平行線得出△PBM∽△PDA,得出,,求出PM= PMAM,

得出APAM+PM3.

1BM+DNMN,理由如下:

如圖1,在MB的延長線上,截取BEDN,連接AE

∵四邊形ABCD是正方形,

ABAD,∠BAD=∠ABC=∠D90°,

∴∠ABE90°=∠D,

在△ABE和△ADN中,,

∴△ABE≌△ADNSAS),

AEAN,∠EAB=∠NAD,

∴∠EAN=∠BAD90°,

∵∠MAN45°

∴∠EAM45°=∠NAM,

在△AEM和△ANM中,

∴△AEM≌△ANMSAS),

MEMN

又∵MEBE+BMBM+DN,

BM+DNMN;

故答案為:BM+DNMN

2)(1)中的結(jié)論不成立,DNBMMN.理由如下:

如圖2,在DC上截取DFBM,連接AF,

則∠ABM90°=∠D

在△ABM和△ADF中,,

∴△ABM≌△ADFSAS),

AMAF,∠BAM=∠DAF,

∴∠BAM+BAF=∠BAF+DAF=∠BAD90°

即∠MAF=∠BAD90°,

∵∠MAN45°

∴∠MAN=∠FAN45°,

在△MAN和△FAN中,,

∴△MAN≌△FANSAS),

MNNF

MNDNDFDNBM,

DNBMMN

3)∵四邊形ABCD是正方形,

ABBCADCD6,ADBC,ABCD,∠ABC=∠ADC=∠BCD90°,

∴∠ABM=∠MCN90°,

CNCD6

DN12,

AN6

ABCD,

∴△ABQ∽△NDQ

,

,

AQAN2 ;

由(2)得:DNBMMN

設(shè)BMx,則MN12xCM6+x,

RtCMN中,由勾股定理得:62+6+x2=(12x2,

解得:x2

BM2,

AM2,

BCAD,

∴△PBM∽△PDA,

,

PMAM,

APAM+PM3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y軸交于A點,過點A的直線與拋物線交于另一點B,過點BBCx軸,垂足為點C(30).

1)求直線AB的函數(shù)關(guān)系式;

2)動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,過點PPNx軸,交直線AB于點M,交拋物線于點N. 設(shè)點P移動的時間為t秒,MN的長度為s個單位,求st的函數(shù)關(guān)系式,并寫出t的取值范圍;

3)設(shè)在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當(dāng)t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C的中點,則下列結(jié)論:①OCAE;②ECBC;③∠DAE=∠ABE;④ACOE,其中正確的有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】河南省政府為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),計劃扶持興建一批新型鋼管裝配式大棚,如圖1所示線段AB、BD分別為大棚的墻高和跨度,AC表示保溫板的長,已知墻高AB3米,墻面與保溫板所成的角∠BAC150°,在點D處測得A點、C點的仰角分別為9°,156°,如圖2所示求保溫板AC的長是多少米?(精確到0.1米)(參考數(shù)據(jù):sin9°≈0.16,cos9°≈0.99,tan9°≈016,sin15.6°≈0.27cos15.6°≈0.96,tan15.6°≈0.28,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校游戲節(jié)活動中,設(shè)計了一個有獎轉(zhuǎn)盤游戲,如圖,A轉(zhuǎn)盤被分成三個面積相等的扇形,B轉(zhuǎn)盤被分成四個面積相等的扇形,每一個扇形都標(biāo)有相應(yīng)的數(shù)字,先轉(zhuǎn)動A轉(zhuǎn)盤,記下指針?biāo)竻^(qū)域內(nèi)的數(shù)字,再轉(zhuǎn)動B轉(zhuǎn)盤,記下指針?biāo)竻^(qū)域內(nèi)的數(shù)字(當(dāng)指針在邊界線上時,重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個區(qū)域內(nèi)為止)

1)請利用畫樹狀圖或列表的方法(只選其中一種),表示出轉(zhuǎn)轉(zhuǎn)盤可能出現(xiàn)的所有結(jié)果;

2)如果將兩次轉(zhuǎn)轉(zhuǎn)盤指針?biāo)竻^(qū)域的數(shù)據(jù)相乘,乘積是無理數(shù)時獲得一等獎,那么獲得一等獎的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中,P是斜邊AC上一個動點,以即為直徑作BC于點D,與AC的另一個交點E,連接DE

1)當(dāng)時,

①若,求的度數(shù);

②求證;

2)當(dāng)時,

①是含存在點P,使得是等腰三角形,若存在求出所有符合條件的CP的長;

②以D為端點過P作射線DH,作點O關(guān)于DE的對稱點Q恰好落在內(nèi),則CP的取值范圍為________.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC5BC6,點D、E分別是邊AB、AC上的動點(點D、E不與△ABC的頂點重合),ADBE交于點F,且∠AFE=∠ABC

1)求證:△ABD∽△BCE;

2)設(shè)AEx,ADFDy,求y關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;

3)當(dāng)△AEF是等腰三角形時,求DF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線軸交于,兩點,與軸交于點,已知點,且對稱軸為直線

1)求該拋物線的解析式;

2)點是第四象限內(nèi)拋物線上的一點,當(dāng)的面積最大時,求點的坐標(biāo);

3)如圖2,點是拋物線上的一個動點,過點軸,垂足為.當(dāng)時,直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宏遠(yuǎn)商貿(mào)公司有AB兩種型號的商品需運出,這兩種商品的體積和質(zhì)量分別如下表所示:


體積(m3/件)

質(zhì)量(噸/件)

A型商品

0.8

0.5

B型商品

2

1

1)已知一批商品有AB兩種型號,體積一共是20m3,質(zhì)量一共是10.5噸,求A、B兩種型號商品各有幾件?

2)物流公司現(xiàn)有可供使用的貨車每輛額定載重3.5噸,容積為6m3,其收費方式有以下兩種:

按車收費:每輛車運輸貨物到目的地收費600元;

按噸收費:每噸貨物運輸?shù)侥康牡厥召M200元.

要將(1)中的商品一次或分批運輸?shù)侥康牡,宏遠(yuǎn)商貿(mào)公司應(yīng)如何選擇運送、付費方式運費最少并求出該方式下的運費是多少元?

查看答案和解析>>

同步練習(xí)冊答案