【題目】已知3n-2m-1=3m-2n,運用等式的性質,試比較m與n的大小.
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)下列表格對應值:
x | 3.24 | 3.25 | 3.26 |
ax2+bx+c | ﹣0.02 | 0.01 | 0.03 |
判斷關于x的方程ax2+bx+c=0(a≠0)的一個解x的范圍是( 。
A. x<3.24 B. 3.24<x<3.25 C. 3.25<x<3.26 D. 3.25<x<3.28
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AM、BN是⊙O的兩條切線,D、C分別在AM、BN上,DC切⊙O于點E,連接OD、OC、BE、AE,BE與OC相交于點P,AE與OD相交于點Q,已知AD=4,BC=9.以下結論:
①⊙O的半徑為 ②OD∥BE ③PB= ④tan∠CEP=
其中正確的結論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請閱讀材料并填空:
如圖1,在等邊三角形ABC內有一點P,且PA=2,PB=,PC=1.求∠BPC的度數(shù)和等邊三角形ABC的邊長.
李明同學的思路是:
將△BPC繞點B逆時針旋轉60°,畫出旋轉后的圖形(如圖2).連接PP′.
(1)根據(jù)李明同學的思路,進一步思考后可求得∠BPC= °,等邊△ABC的邊長為 .
(2)請你參考李明同學的思路,探究并解決下列問題:
如圖3,在正方形ABCD內有一點P,且PA= ,BP= ,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象經過點(﹣1,4),且與直線y=﹣x+1相交于A、B兩點(如圖),A點在y軸上,過點B作BC⊥x軸,垂足為點C(﹣3,0).
(1)求二次函數(shù)的表達式;
(2)點N是二次函數(shù)圖象上一點(點N在AB上方),過N作NP⊥x軸,垂足為點P,交AB于點M,求MN的最大值;
(3)在(2)的條件下,是否存在點N,使得BM與NC相互垂直平分?若存在,求出所有滿足條件的N點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的個數(shù)是( 。
①過兩點有且只有一條直線; ②兩直線相交只有一個交點;
③0的絕對值是它本身 ④射線AB和射線BA是同一條射線.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)是( 。
①連接兩點的線中,垂線段最短;
②兩條直線相交,有且只有一個交點;
③若兩條直線有兩個公共點,則這兩條直線重合;
④若AB+BC=AC,則A、B、C三點共線.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l上有AB兩點,AB=18cm,點O是線段AB上的一點,OA=2OB
(1)OA=_____cm, OB=_____cm;
(2)若點C是直線AB上一點,且滿足AC=CO+CB,求CO的長;
(3)若動點P,Q分別從A,B同時出發(fā),向右運動,點P的速度為3cm/s,點Q的速度為1cm/s.設運動時間為ts,當點P與點Q重合時,P,Q兩點停止運動.
①當t為何值時,2OP﹣OQ=4;
②當點P經過點O時,動點M從點O出發(fā),以4cm/s的速度也向右運動.當點M追上點Q后立即返回,以4cm/s的速度向點P運動,遇到點P后再立即返回,以4cm/s的速度向點Q運動,如此往返.當點P與點Q重合時,P,Q兩點停止運動.此時點M也停止運動.在此過程中,點M行駛的總路程是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com