【題目】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點(diǎn)D是以點(diǎn)A為圓心4為半徑的圓上一點(diǎn),連接BD,點(diǎn)M為BD中點(diǎn),線段CM長(zhǎng)度的最大值為

【答案】7
【解析】解:作AB的中點(diǎn)E,連接EM、CE.
在直角△ABC中,AB= = =10,
∵E是直角△ABC斜邊AB上的中點(diǎn),
∴CE= AB=5.
∵M(jìn)是BD的中點(diǎn),E是AB的中點(diǎn),
∴ME= AD=2.
∴在△CEM中,5﹣2≤CM≤5+2,即2≤CM≤7.
∴最大值為7,
所以答案是:7.
【考點(diǎn)精析】利用直角三角形斜邊上的中線和三角形中位線定理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直角三角形斜邊上的中線等于斜邊的一半;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠計(jì)劃生產(chǎn)A,B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤(rùn)如下表:


A種產(chǎn)品

B種產(chǎn)品

成本(萬(wàn)元/件)

2

5

利潤(rùn)(萬(wàn)元/件)

1

3

1)若工廠計(jì)劃獲利14萬(wàn)元,問A,B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?

2)若工廠計(jì)劃投入資金不多于44萬(wàn)元,且獲利多于14萬(wàn)元,問工廠有哪幾種生產(chǎn)方案?

3)在(2)的條件下,哪種生產(chǎn)方案獲利最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB、BD為鄰邊作ABDE,連接AD、EC.
(1)試說明:△ADC≌△ECD;
(2)若BD=CD,試說明:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小紅學(xué)習(xí)了用圖形面積研究整式乘法的方法后,分別進(jìn)行了如下數(shù)學(xué)探究:把一根鐵絲截成兩段,

探究1:小明截成了兩根長(zhǎng)度不同的鐵絲,并用兩根不同長(zhǎng)度的鐵絲分別圍成兩個(gè)正方形,已知兩正方形的邊長(zhǎng)和為20cm,它們的面積的差為40cm2,則這兩個(gè)正方形的邊長(zhǎng)差為

探究2:小紅截成了兩根長(zhǎng)度相同的鐵絲,并用兩根同樣長(zhǎng)的鐵絲分別圍成一個(gè)長(zhǎng)方形與一個(gè)正方形,若長(zhǎng)方形的長(zhǎng)為xm,寬為ym,

(1)用含x、y的代數(shù)式表示正方形的邊長(zhǎng)為

(2)設(shè)長(zhǎng)方形的長(zhǎng)大于寬,比較正方形與長(zhǎng)方形面積哪個(gè)大,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD 相交于點(diǎn)O,∠AOD=3BOD+20°.

(1)求∠BOD的度數(shù);

(2)O為端點(diǎn)引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠CAB=DAB下列條件中不能使△ABC≌△ABD的是( )

A. C=D B. ABC=ABD C. AC=AD D. BC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過程,請(qǐng)?zhí)羁?/span>.

解:∵OA⊥OB(已知)

所以_____=90°________

因?yàn)?/span>_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,

所以______=_____(等量代換)

所以______=90°

所以OC⊥OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一大門欄桿的平面示意圖如圖所示,BA垂直地面AE于點(diǎn)A,CD平行于地面AE,∠BCD=150°,∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅玩抽卡片和旋轉(zhuǎn)盤游戲,有兩張正面分別標(biāo)有數(shù)字1,﹣2的不透明卡片,背面完全相同;轉(zhuǎn)盤被平均分成3個(gè)相等的扇形,并分別標(biāo)有數(shù)字﹣1,3,4(如圖所示),小云把卡片背面朝上洗勻后從中隨機(jī)抽出一張,記下卡片上的數(shù)字;然后轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,記下指針?biāo)趨^(qū)域的數(shù)字(若指針在分格線上,則重轉(zhuǎn)一次,直到指針指向某一區(qū)域?yàn)橹梗?qǐng)用列表或樹狀圖的方法(只選其中一種)求出兩個(gè)數(shù)字之積為負(fù)數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案