【題目】如圖,△ABC中,AC=BC,∠ACB=120°,點(diǎn)D在AB邊上運(yùn)動(dòng)(D不與A、B重合),連結(jié)CD.作∠CDE=30°,DE交AC于點(diǎn)E.
(1)當(dāng)DE∥BC時(shí),△ACD的形狀按角分類是直角三角形;
(2)在點(diǎn)D的運(yùn)動(dòng)過程中,△ECD的形狀可以是等腰三角形嗎?若可以,請求出∠AED的度數(shù);若不可以,請說明理由.
【答案】(1)見解析(2)△ECD可以是等腰三角形,∠AED=105°
【解析】試題分析:(1)、由DE∥BC得到∠BCD=∠CDE=30°,再由∠ACB=120°,得到∠ACD=120°﹣30°=90°,則△ACD是直角三角形;(2)、分類討論:當(dāng)∠CDE=∠ECD時(shí),EC=DE;當(dāng)∠ECD=∠CED時(shí),CD=DE;當(dāng)∠CED=∠CDE時(shí),EC=CD;然后利用等腰三角形的性質(zhì)和三角形的內(nèi)角和定理進(jìn)行計(jì)算.
試題解析:(1)、∵△ABC中,AC=BC, ∴∠A=∠B===30°,
∵DE∥BC, ∴∠ADE=∠B=30°, 又∵∠CDE=30°, ∴∠ADC=∠ADE+∠CDE=30°+30°=60°,
∴∠ACD=180°﹣∠A﹣∠ADC=180°﹣30°﹣60°=90°, ∴△ACD是直角三角形;
(2)、△ECD可以是等腰三角形.理由如下:
①當(dāng)∠CDE=∠ECD時(shí),EC=DE, ∴∠ECD=∠CDE=30°, ∵∠AED=∠ECD+∠CDE, ∴∠AED=60°,
②當(dāng)∠ECD=∠CED時(shí),CD=DE, ∵∠ECD+∠CED+∠CDE=180°,
∴∠CED===75°, ∴∠AED=180°﹣∠CED=105°,
③當(dāng)∠CED=∠CDE時(shí),EC=CD, ∠ACD=180°﹣∠CED﹣∠CDE=180°﹣30°﹣30°=120°,
∵∠ACB=120°, ∴此時(shí),點(diǎn)D與點(diǎn)B重合,不合題意.
綜上,△ECD可以是等腰三角形,此時(shí)∠AED的度數(shù)為60°或105°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段MN=4,MN∥y軸,若點(diǎn)M坐標(biāo)為(﹣1,2),則N點(diǎn)坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班第一小組7名同學(xué)的畢業(yè)升學(xué)體育測試成績(滿分30分)依次為:25,23,25,23,27,30,25,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )
A.23,25
B.23,23
C.25,23
D.25,25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)數(shù)若有兩個(gè)不同的平方根,則這兩個(gè)平方根的和為( )
A. 大于0 B. 等于0 C. 小于0 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=kx(k<0)的圖象上兩點(diǎn)A(x1,y1)、B(x2,y2),且x1<x2,則下列不等式中恒成立的是( )
A. y1+y2>0 B. y1+y2<0
C. y1﹣y2>0 D. y1﹣y2<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com