【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展,小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.

1)根據(jù)題意,填寫下表:

重量(千克)

費(fèi)用(元)

0.5

1

3

4

甲公司

_________

22

_________

67

乙公司

11

________

51

_________

2)請(qǐng)分別寫出甲乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;

3)小明應(yīng)選擇哪家快遞公司更省錢?

【答案】111;52;1967;(2yy=16x+3x0);(3)當(dāng)快遞物品少于千克或多于4千克時(shí),選擇甲公司省錢;當(dāng)快遞物品等于千克或等于4千克時(shí),兩家公司費(fèi)用一樣;當(dāng)快遞物品多于千克而少于4千克時(shí),選擇乙公司省錢.

【解析】

1)根據(jù)甲、乙公司的收費(fèi)方式,求出y值即可;

2)根據(jù)甲、乙公司的收費(fèi)方式結(jié)合數(shù)量關(guān)系,找出y、y(元)與x(千克)之間的函數(shù)關(guān)系式;

3)分0x≤1x1兩種情況,分別求出yyy=y、yy時(shí)x的取值范圍,綜上即可得出結(jié)論.

解:(1)當(dāng)x=0.5時(shí),y=22×0.5=11;

當(dāng)x=3時(shí),y=22+15×2=52;

當(dāng)x=1時(shí),y=16×1+3=19

當(dāng)x=4時(shí),y=16×4+3=67

故答案為:11;52;1967

2)當(dāng)0x≤1時(shí),y=22x;

當(dāng)x1時(shí),y=22+15x1=15x+7

y

y=16x+3x0).

3)若0x≤1,當(dāng)y甲>y乙時(shí),有22x16x+3,

解得:;

當(dāng)y=y時(shí),有22x=16x+3,

解得:

當(dāng)yy時(shí),有22x16x+3,

解得:

x1,當(dāng)yy時(shí),有15x+716x+3,

解得:x4;

當(dāng)y=y時(shí),有15x+7=16x+3

解得:x=4;

當(dāng)y甲<y乙時(shí),有15x+716x+3,

解得:x4

綜上可知:當(dāng)快遞物品少于千克或多于4千克時(shí),選擇甲公司省錢;當(dāng)快遞物品等于千克或等于4千克時(shí),兩家公司費(fèi)用一樣;當(dāng)快遞物品多于千克而少于4千克時(shí),選擇乙公司省錢.

故答案為(11152;19;67;(2y;y=16x+3x0);(3)當(dāng)快遞物品少于千克或多于4千克時(shí),選擇甲公司省錢;當(dāng)快遞物品等于千克或等于4千克時(shí),兩家公司費(fèi)用一樣;當(dāng)快遞物品多于千克而少于4千克時(shí),選擇乙公司省錢.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OA、OB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(0,3),∠ABO30°,將△ABC沿AB所在直線對(duì)折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為(  )

A. (,)B. (2)C. (,)D. (,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,AC3,BC7,點(diǎn)P是邊AC上不與點(diǎn)AC重合的一點(diǎn),作PDBCAB邊于點(diǎn)D

1)如圖1,將APD沿直線AB翻折,得到AP'D,作AEPD.求證:AEED;

2)將APD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到AP'D',點(diǎn)P、D的對(duì)應(yīng)點(diǎn)分別為點(diǎn)P'D',

①如圖2,當(dāng)點(diǎn)D'ABC內(nèi)部時(shí),連接PCD'B,求證:AP'C∽△AD'B;

②如果APPC51,連接DD',且DD'AD,那么請(qǐng)直接寫出點(diǎn)D'到直線BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長方形中,邊的長為,邊的長為,是長方形邊上的一個(gè)動(dòng)點(diǎn),當(dāng)三點(diǎn)構(gòu)成的三角形為等腰三角形時(shí),的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,面積為1的正方形ABCD中,M,N分別為ADBC的中點(diǎn),將C點(diǎn)折至MN上,落在P點(diǎn)的位置,折痕為BQ,連接PQ.以PQ為邊長的正方形的面積等于______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,若AO=10,則⊙O的半徑長為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四張質(zhì)地完全相同的卡片,正面分別寫有四個(gè)角度,現(xiàn)將這四張卡片洗勻后,背面朝上.

(1)若從中任意抽取--張,求抽到銳角卡片的概宰;

(2)若從中任意抽取兩張,求抽到的兩張角度恰好互補(bǔ)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)yax23ax4a的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3)

1)求二次函數(shù)的表達(dá)式及點(diǎn)A、點(diǎn)B的坐標(biāo);

2)若點(diǎn)D在二次函數(shù)圖象上,且,求點(diǎn)D的橫坐標(biāo);

3)將直線BC向下平移,與二次函數(shù)圖象交于M,N兩點(diǎn)(MN左側(cè)),如圖2,過MMEy軸,與直線BC交于點(diǎn)E,過NNFy軸,與直線BC交于點(diǎn)F,當(dāng)MN+ME的值最大時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E,F分別在邊AC,BC上),給出以下判斷:①當(dāng)CDAB時(shí),EF為△ABC的中位線;②當(dāng)四邊形CEDF為矩形時(shí),ACBC;③當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),△CEF與△ABC相似;④當(dāng)△CEF與△ABC相似時(shí),點(diǎn)DAB的中點(diǎn).其中正確的是_____(把所有正確的結(jié)論的序號(hào)都填在橫線上).

查看答案和解析>>

同步練習(xí)冊(cè)答案