若f(x)>0,符號
ba
f(x)dx
表示函數(shù)y=f(x)的圖象與過點(diǎn)(a,0),(b,0)且和x軸垂直的直線及x軸圍成圖形的面積.如圖,
21
(x+1)dx
表示梯形ABCD的面積.設(shè)A=
21
2
x
dx
B=
21
(-x+3)dx
,C=
21
(-
3
2
x2+
7
2
x)dx
,則A,B,C中最大的是( 。
A.AB.BC.CD.無法比較

根據(jù)題意中介紹的符號的意義可得A、B、C的幾何意義;
分別表示在1≤x≤2上,y=
2
x
,y=-x+3,y=-
3
2
x2+
7
2
x的圖象與x軸圍成圖形面積,作圖比較可得C>B>A.
故C最大.
故選:C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(3,-2),且與y軸交于N(0,
5
2
).
(1)求該二次函數(shù)的解析式,并用列表、描點(diǎn)畫出它的圖象;
(2)若該圖象與x軸交于A、B兩點(diǎn),在對稱軸右側(cè)的圖象上存在點(diǎn)C,使得△ABC的面積等于12,求出C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線經(jīng)過了邊長為1的正方形ABOC的三個(gè)頂點(diǎn)A,B,C,則拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2-2x-3與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線l與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.
(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個(gè)動點(diǎn),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長度的最大值;
(3)點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+4x與x軸分別相交于點(diǎn)B、O,它的頂點(diǎn)為A,連接AB,AO.
(1)求點(diǎn)A的坐標(biāo);
(2)以點(diǎn)A、B、O、P為頂點(diǎn)構(gòu)造直角梯形,請求一個(gè)滿足條件的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=
1
2
mx2-
3
2
mx-2m交x軸于A(x1,0),B(x2,0)交y軸負(fù)半軸于C點(diǎn),且x1<0<x2,(AO+OB)2=12CO+1.
(1)求拋物線的解析式;
(2)在x軸的下方是否存在著拋物線上的點(diǎn)P,使∠APB為銳角?若存在,求出P點(diǎn)的橫坐標(biāo)的范圍;若不存在,請說明理由.
(3)如圖點(diǎn)E(2,-5),將直線CE向上平移a個(gè)單位與拋物線交于M,N兩點(diǎn),若AM=AN,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c當(dāng)x=-2時(shí)有最大值4,且二次函數(shù)圖象與直線y=x+1的一個(gè)交點(diǎn)為P(m,0),求:
(1)m的值;
(2)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,排球運(yùn)動員甲站在點(diǎn)O處練習(xí)發(fā)球,球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場的邊界距O點(diǎn)的水平距離為18m.若把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)是二次函數(shù)關(guān)系.以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系.
(1)在某一次發(fā)球時(shí),甲將球從O點(diǎn)正上方2m的A處發(fā)出,已知球的最大飛行高度為2.6m,此時(shí)距O點(diǎn)的水平距離為6m.
①求拋物線的解析式.
②球能否越過球網(wǎng)?球會不會出界?請說明理由.
(2)若球的最大飛行高度時(shí)距O點(diǎn)的水平距離6m不變,要使球一定能越過球網(wǎng),又不出邊界,求二次函數(shù)中二次項(xiàng)系數(shù)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,圖①是一座拋物線型拱橋在建造過程中裝模時(shí)的設(shè)計(jì)示意圖,拱高為30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之間的距離均為15m,B1B5A1A5,將拋物線放在圖②所示的直角坐標(biāo)系中.
(1)直接寫出圖②中點(diǎn)B1、B3、B5的坐標(biāo);
(2)求圖②中拋物線的函數(shù)表達(dá)式;
(3)求圖①中支柱A2B2、A4B4的長度.

查看答案和解析>>

同步練習(xí)冊答案