如圖,已知點(diǎn)A從(1,0)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿x軸向正方向運(yùn)動(dòng),以O(shè)、A為頂點(diǎn)在x軸的上方作菱形OABC,且∠AOC=60°;同時(shí)點(diǎn)G從點(diǎn)D(8,0)出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度沿x軸向負(fù)方向運(yùn)動(dòng),以D、G為頂點(diǎn)在x軸的上方作正方形DEFG.設(shè)點(diǎn)A運(yùn)動(dòng)了t秒.求:
(1)點(diǎn)B的坐標(biāo)(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,當(dāng)t為何值時(shí),點(diǎn)O、B、E在同一直線上;
(3)當(dāng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,是否存在t,使得以點(diǎn)C、G、D為頂點(diǎn)的三角形為等腰三角形?若存在精英家教網(wǎng),求出t的值;若不存在,請(qǐng)說(shuō)明理由.
分析:(1)作BH⊥x軸于H點(diǎn),根據(jù)OA=AB=t,表示出BH和AH的長(zhǎng)即可求得B點(diǎn)的坐標(biāo);
(2)求得線段OB所在直線的解析式后將用t表示的E點(diǎn)的坐標(biāo)代入就可以求得三點(diǎn)共線的時(shí)間t;
(3)用t表示出C、G點(diǎn)的坐標(biāo)分①若CG=CD,則CG2=CD2、②若GC=GD,則GC2=GD2、③若DC=DG,則DC2=DG2三種情況求得存在的時(shí)間t.
解答:解:(1)作BH⊥x軸于H點(diǎn),
∵OA=AB=1+t,∠AOC=∠BAH=60°
∴AH=
1+t
2
,BH=
3
2
(t+1),
∴OH=t+1+
t+1
2
=
3t+3
2
,
∴B(
3t+3
2
3
2
(t+1))(2分)

(2)將點(diǎn)B(
3t+3
2
,
3
2
(t+1))代入直線OB的解析式y(tǒng)=kx,
解得直線的解析式為y=
3
3
x
,
∵點(diǎn)E的坐標(biāo)為(8,2t),且O、B、E三點(diǎn)共線,
∴∠BOD=30°
∴2t=
3
3
×8

解得:t=
4
3
3
(3分)
精英家教網(wǎng)
(3)過(guò)C作CM⊥x軸,交x軸于M,連接CG,
∵C(
1+t
2
,
3
+
3t
2
),G(8-2t,0),D(8,0),
∴MG=OG-OM=8-2t-
1+t
2
,CM=
3
+
3
t
2

在直角三角形CMG中,CG2=MG2+CM2,
CG2=(
15-5t
2
)2+
3
4
(1+t)2

CD2=(
15-t
2
)2+
3
4
(1+t)2
,GD2=4t2
假設(shè)存在滿足條件的t,則
①若CG=CD,則CG2=CD2,
(
15-5t
2
)2+
3
4
(1+t)2
=(
15-t
2
)2+
3
4
(1+t)2
t1=0(舍去)t2=5
②若GC=GD,則GC2=GD2
(
15-5t
2
)2+
3
4
(1+t)2
=4t2,t1=6+
17
,t2=6-
17
,
③若DC=DG,則DC2=DG2
(
15-t
2
)2+
3
4
(1+t)2
=4t2,t1=-1+2
5
t2=-1-2
5
(舍去)
(11分)(每種情況2分)
∴存在滿足條件的t值為:5,6+
17
,6-
17
,-1+2
5
(12分)
點(diǎn)評(píng):本題考查了相似三角形的判定及性質(zhì)、等腰三角形、勾股定理等知識(shí),是一道綜合性較強(qiáng)的題目,特別是題目中涉及到的動(dòng)點(diǎn)問(wèn)題,更是中考的一個(gè)高頻考點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A從(1,0)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿x軸向正方向運(yùn)動(dòng),以O(shè),精英家教網(wǎng)A為頂點(diǎn)作菱形OABC,使點(diǎn)B,C在第一象限內(nèi),且∠AOC=60°;以P(0,3)為圓心,PC為半徑作圓.設(shè)點(diǎn)A運(yùn)動(dòng)了t秒,求:
(1)點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)A在運(yùn)動(dòng)過(guò)程中,所有使⊙P與菱形OABC的邊所在直線相切的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知點(diǎn)A從(1,0)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿x軸向正方向運(yùn)動(dòng),以O(shè)、A為頂點(diǎn)在x軸的上方作菱形OABC,且∠AOC=60°;同時(shí)點(diǎn)G從點(diǎn)D(8,0)出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度沿x軸向負(fù)方向運(yùn)動(dòng),以D、G為頂點(diǎn)在x軸的上方作正方形DEFG.設(shè)點(diǎn)A運(yùn)動(dòng)了t秒.求:
(1)點(diǎn)B的坐標(biāo)(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,當(dāng)t為何值時(shí),點(diǎn)O、B、E在同一直線上;
(3)當(dāng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,是否存在t,使得以點(diǎn)C、G、D為頂點(diǎn)的三角形為等腰三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省無(wú)錫市惠山區(qū)八校聯(lián)考中考適應(yīng)性訓(xùn)練數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知點(diǎn)A從(1,0)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿x軸向正方向運(yùn)動(dòng),以O(shè)、A為頂點(diǎn)在x軸的上方作菱形OABC,且∠AOC=60°;同時(shí)點(diǎn)G從點(diǎn)D(8,0)出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度沿x軸向負(fù)方向運(yùn)動(dòng),以D、G為頂點(diǎn)在x軸的上方作正方形DEFG.設(shè)點(diǎn)A運(yùn)動(dòng)了t秒.求:
(1)點(diǎn)B的坐標(biāo)(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,當(dāng)t為何值時(shí),點(diǎn)O、B、E在同一直線上;
(3)當(dāng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,是否存在t,使得以點(diǎn)C、G、D為頂點(diǎn)的三角形為等腰三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第26章《圓》中考題集(48):26.5 直線與圓的位置關(guān)系(解析版) 題型:解答題

如圖,已知點(diǎn)A從(1,0)出發(fā),以1個(gè)單位長(zhǎng)度/秒的速度沿x軸向正方向運(yùn)動(dòng),以O(shè),A為頂點(diǎn)作菱形OABC,使點(diǎn)B,C在第一象限內(nèi),且∠AOC=60°;以P(0,3)為圓心,PC為半徑作圓.設(shè)點(diǎn)A運(yùn)動(dòng)了t秒,求:
(1)點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)A在運(yùn)動(dòng)過(guò)程中,所有使⊙P與菱形OABC的邊所在直線相切的t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案