55、如圖,已知在△ABC中,∠BAC=90°,AB=AC,AE是過點A的直線,BD⊥AE,CE⊥AE,垂足分別是D、E,若CE=3,BD=7,則DE=
4
分析:只要利用已知條件證明△ADB≌△CEA即可求出DE的長.
解答:解:∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°
∵∠BAC=90°,
∴∠BAD=∠BAC-∠CAE=90°-∠CAE,
在△AEC中,∠ACE=∠AEC-CAE=90°-∠CAE,
∴∠BAD=∠ACE,
在△ADB和△CEA中,AB=AC
∴△ADB≌△CEA(AAS),
∴CE=AD,BD=AE,
∴DE=AE-AD=BD-CE=7-3=4.
故填空答案:4.
點評:此題考查了全等三角形的判定與性質(zhì),也利用等量代換的數(shù)學思想.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、如圖,已知在△ABC中,AD、AE分別是BC邊上的高和中線,AB=9cm,AC=7cm,BC=8m,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,BD為∠ABC的平分線,AB=BC,點P在BD上,PM⊥AD于M,PN⊥CD于N,求證:PM=PN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分線.
(1)∠ADC=
60°
60°

(2)求證:BC=CD+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線交于點P.當∠A=70°時,則∠BPC的度數(shù)為
125°
125°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,CD=CE,∠A=∠ECB,試說明CD2=AD•BE.

查看答案和解析>>

同步練習冊答案