【題目】已知在△ABC中,AC=BC,AC⊥BC于點(diǎn)C,過(guò)點(diǎn)C作直線EF∥AB,點(diǎn)D在直線EF上,連接BD,過(guò)點(diǎn)D作GD⊥BD,交直線AC于點(diǎn)H,連接BG.
(1)如圖1所示,當(dāng)點(diǎn)D在射線CF上,點(diǎn)H在射線AC上時(shí),連接BH,過(guò)點(diǎn)D作MD⊥CD,交CB的延長(zhǎng)線于點(diǎn)M. 求證:∠GBH+∠G=∠M;
(2)如圖2所示,當(dāng)點(diǎn)D在射線CE上,點(diǎn)H在射線CA上時(shí),試判斷并證明DH與BD之間的數(shù)量關(guān)系.
圖1 圖2
【答案】(1)證明見(jiàn)解析; (2)DH=BD.
【解析】分析:(1)如圖1中,作DN⊥EM于N,DP⊥AC于P.只要證明四邊形PCND是矩形,△DPH≌△DNB,推出DH=BD,推出△BDH是等腰直角三角形,由此即可解決問(wèn)題;(2)如圖2中,作DN⊥BC于N,DP⊥AC于P.只要證明四邊形PCND是矩形,△DPH≌△DNB即可;
本題解析:
(1)證明:如圖1,作DN⊥EM于N,DP⊥AC于P.
∵CA=CB, ∠ACB=90°, ∴∠A=∠ABC=45°, ∵EF∥AB, ∴∠DCP=∠A=∠DCB=45°, ∵DN⊥EM于N,DP⊥AC于P, ∴DP=DN, ∵∠PCN=DNC=∠DPC=90°, ∴四邊形PCND是矩形,∴∠PDN=BDH=90°, ∴PDH=BDN, ∴△DPH≌△DNB, ∴DH=BD, ∴△BDH是等腰直角三角形,∴∠BHD=45°, ∵∠BHD=∠GBH+∠G, ∴∠GBH+∠G=45°, ∵DM⊥DC, ∴∠M=∠DCM=45°, ∴∠GBH+∠G=∠M.
(2)如圖2,作DN⊥BC于N,DP⊥AC于P,
∵CA=CB, ∠ACB=90°, ∴∠BCA=∠ABC=45°, ∵EF∥AB, ∴∠DCP=∠BAC=∠DCN=45°, ∵DN⊥EM于N,DP⊥AC于P, ∴DP=DN, ∵∠PCN=∠DNC=∠DPC=90°, ∴四邊形PCND是矩形,∴∠PDN=∠BDH=90°, ∴∠PDH=∠BDN, ∴△DPH≌△DNB, ∴DH=BD.
點(diǎn)睛:本題考查了等腰直角三角形的性質(zhì).平行線的性質(zhì)、全等三角形的判定與性質(zhì)、矩形的判定與性質(zhì)等知識(shí)點(diǎn),能添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題,是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°,AB= ,折疊后,點(diǎn)C落在AD邊上的C1處,并且點(diǎn)B落在EC1邊上的B1處.則BC的長(zhǎng)為( 。
A. B. 3 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過(guò)點(diǎn)E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點(diǎn)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);
①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長(zhǎng);
②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.x6÷x3=x2B.(﹣2x)3=﹣8x3C.x6x4=x24D.(x3)3=x6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊三角形ABC和等腰三角形ABD按如圖所示的位置擺放,∠DAB=90°,AC與BD相交于點(diǎn)E,F(xiàn)為AD上一點(diǎn),連接EF,CF,CF與BD交于點(diǎn)P,過(guò)點(diǎn)D作DG⊥AC于點(diǎn)G,過(guò)點(diǎn)B作BH⊥AC于點(diǎn)H. 已知∠ECF=45°.
(1)求證:△CDE≌△DCF;
(2)試判斷CD與EF之間的位置關(guān)系,并說(shuō)明理由;
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B兩地相距900 m,甲、乙兩人同時(shí)從A地出發(fā),以相同速度勻速步行,20 min后到達(dá)B地,甲隨后馬上沿原路按原速返回,回到A地后在原地等候乙回來(lái);乙則在B地停留10 min后也沿原路以原速返回A地,則甲、乙兩人之間的距離s(m)與步行時(shí)間t(min)之間的函數(shù)關(guān)系可以用圖象表示為 ( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某兒童服裝店欲購(gòu)進(jìn)A、B兩種型號(hào)的兒童服裝;經(jīng)調(diào)查:B型號(hào)童裝的進(jìn)貨單價(jià)是A型號(hào)童裝的進(jìn)貨單價(jià)的兩倍,購(gòu)進(jìn)A型號(hào)童裝60件和B型號(hào)童裝40件共用去2100元.
求A、B兩種型號(hào)童裝的進(jìn)貨單價(jià)各是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com