精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,A(12)B(31)C(-2,-1).

1)在圖中作出關于軸對稱的.

2)寫出點的坐標(直接寫答案).

A1_____________B1______________,C1______________

【答案】1)如圖所示:

2A11,-2),B13-1),C1-21

【解析】

(1)利用關于y軸對稱點的性質得出對應點位置畫出圖形即可;(2)利用所畫圖形得出各點坐標;(3)利用△ABC所在矩形面積減去周圍三角形面積進而求出即可.

本題解析:

(1)如圖所示:,即為所求;

(2)(1,2), (3,1), (2,1);

故答案為:(1,2),(3,1),(2,1);

(3)的面積為:3×5×2×1×3×3×2×5=4.5.故答案為:4.5.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,平面直角坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經過O,C兩點做拋物線y1=ax(x﹣t)(a為常數,a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數,k>0)

(1)填空:用含t的代數式表示點A的坐標及k的值:A , k=;
(2)隨著三角板的滑動,當a= 時:
①請你驗證:拋物線y1=ax(x﹣t)的頂點在函數y= 的圖象上;
②當三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關系式及t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠ACB=90°,AC=BC,BDDE,AEDE,垂足分別為D、E.(這幾何模型具備“一線三直角”)如下圖:

(1)①請你證明:△ACE△CBD;②若AE=3,BD=5,DE的長;

(2)遷移:如圖:在等腰Rt△ABC中,且∠C=90°,CD=2,BD=3,D、E分別是邊BC,AC上的點,將DE繞點D順時針旋轉90°,點E剛好落在邊AB上的點F處,則CE=________。(不要求寫過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求,商家又用28800元購進了第二批這種襯衫,所購數量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤不低于25%(不考慮其他因素),那么每件襯衫的標價至少是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知A(a,0),B(b,0),其中a,b滿足|a+1|+(b﹣3)2=0.

1)填空:a=  b=  ;

2)如果在第三象限內有一點M﹣2,m),請用含m的式子表示ABM的面積;

3)在(2)條件下,當m=時,在y軸上有一點P,使得BMP的面積與ABM的面積相等,請求出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知E∠AOB的平分線上的一點,EC⊥OA,ED⊥OB,垂足分別是C,D.求證:OE垂直平分CD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一個由傳感器A控制的燈,要裝在門上方離地面4.5m的墻上,任何東西只要移至該燈5m5m內,燈就會自動發(fā)光,小明身高1.5m,他走到離墻_______的地方燈剛好發(fā)光.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】寧波火車站北廣場將于2015年底投入使用,計劃在廣場內種植A,B兩種花木共6600棵,若A花木數量是B花木數量的2倍少600棵
(1)A,B兩種花木的數量分別是多少棵?
(2)如果園林處安排26人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小強擲兩枚質地均勻的骰子,每個骰子的六個面上分別刻有1到6的點數,則兩枚骰子點數相同的概率為

查看答案和解析>>

同步練習冊答案