【題目】如圖,已知在RtOAC中,∠OCA=90°,O為坐標(biāo)原點,直角頂點Cx軸的正半軸上,反比例函數(shù)y=k0)在第一象限的圖象經(jīng)過OA的中點B,交AC于點D,連接OD.若∠A=COD,則直線OA的解析式為______

【答案】y=2x

【解析】

設(shè)OC=a,由點Dy=上可表示出CD長,由兩組對應(yīng)角分別相等的兩個三角形相似可得△OCD∽△ACO,由相似三角形對應(yīng)線段成比例的性質(zhì)可得AC,由中點的定義表示出B點坐標(biāo),根據(jù)點B在反比例函數(shù)圖象上可得a,k的關(guān)系,用a表示出點B坐標(biāo),再代入直線OA的解析式y=mx求解即可.

解:設(shè)OC=a,

∵點Dy=k0)上,

CD=,

∵∠A=COD,∠ACO=OCD,

∴△OCD∽△ACO,

=,

AC==,

∴點Aa),

∵點BOA的中點,

∴點B的坐標(biāo)為(,),

∵點B在反比例函數(shù)圖象上,

k==

a4=4k2,

解得a2=2k,

∴點B的坐標(biāo)為(,a),

設(shè)直線OA的解析式為y=mx,

m=a

解得m=2,

所以,直線OA的解析式為y=2x

故答案為:y=2x

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,,,點是邊上一點,過點分別作的垂線,過點的垂線,得到矩形和矩形,則這兩個矩形的面積之和的最大值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點M放在正方形ABCD的對角線AC(不與點A重合)上滑動,連結(jié)DM,做MN⊥DM,交直線ABN

(1)求證:DM=MN;

(2)若將(1)中的正方形變?yōu)榫匦,其余條件不變?nèi)鐖D,且DC=2AD,求MD:MN的值;

(3)在(2)中,若CD=nAD,當(dāng)M滑動到CA的延長線上時(如圖3),請你直接寫出MDMN的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線Ly=x+2x軸、y軸分別交于A、B兩點,在y軸上有一點N0,4),動點MA點以每秒1個單位的速度勻速沿x軸向左移動.

1)點A的坐標(biāo):_____;點B的坐標(biāo):_____;

2)求NOM的面積SM的移動時間t之間的函數(shù)關(guān)系式;

3)在y軸右邊,當(dāng)t為何值時,NOMAOB,求出此時點M的坐標(biāo);

4)在(3)的條件下,若點G是線段ON上一點,連結(jié)MG,MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在復(fù)習(xí)數(shù)學(xué)知識時,針對“求一元二次方程的解”,整理了以下的幾種方法,請你將有關(guān)內(nèi)容補充完整.例題:求一元二次方程的兩個解.

1)解法一:選擇合適的一種方法(公式法、配方法、分解因式法)求解.解方程:;

2)解法二:利用二次函數(shù)圖象與坐標(biāo)軸的交點求解,如圖1所示,把方程的解看成是二次函數(shù)y= 的圖象與x軸交點的橫坐標(biāo),即x1,x2就是方程的解.

3)解法三:利用兩個函數(shù)圖象的交點求解.

①把方程的解看成是一個二次函數(shù)y= 的圖象與一個一次函數(shù)y= 的圖象交點的橫坐標(biāo);

②畫出這兩個函數(shù)的圖象,用x1,x2x軸上標(biāo)出方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點DE⊙O上一點,且∠AED=45°

1)判斷CD⊙O的位置關(guān)系,并說明理由;

2)若⊙O半徑為4cm,AE=6cm,求∠ADE的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小雪和小松分別從家和圖書館出發(fā),沿同一條筆直的馬路相向而行.小雪開始跑步,中途在某地改為步行,且步行的速度為跑步速度的一半,小雪先出發(fā)5分鐘后,小松才騎自行車勻速回家.小雪到達圖書館恰好用了35分鐘.兩人之間的距離ym)與小雪離開出發(fā)地的時間xmin)之間的函數(shù)圖象如圖所示,則當(dāng)小松剛到家時,小雪離圖書館的距離為____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點D是直線AB上一動點(不包含點A,B),過點BBE⊥CD于點E,連接EA

1)如圖1,當(dāng)點D在線段AB上時,直接寫出線段CE,BEAE的數(shù)量關(guān)系:______

2)如圖2,當(dāng)點D在線段AB的延長線上時,判斷線段CE,BE,AE的數(shù)量關(guān)系,并加以證明.

3)如圖3,當(dāng)點D在線段BA的延長線上時,并將已知條件中的“AB=AC”改成;,其他條件不變,若CE=1,請直接寫出線段BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標(biāo)為(﹣2,3),點B的坐標(biāo)為(4,n).

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)在x軸上是否存在點P,使△APC是直角三角形?若存,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案