【題目】如圖,已知ABCADE均為等邊三角形,點(diǎn)OAC的中點(diǎn),點(diǎn)DA射線BO上,連接OEEC,若AB4,則OE的最小值為_____

【答案】1

【解析】

根據(jù)等邊三角形的性質(zhì)可得OCAC,∠ABD30°,根據(jù)SAS可證ABD≌△ACE,可得∠ACE30°=∠ABD,當(dāng)OEEC時(shí),OE的長(zhǎng)度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.

解:∵△ABC的等邊三角形,點(diǎn)OAC的中點(diǎn),

OCAC,∠ABD30°

∵△ABCADE均為等邊三角形,

ABAC,ADAE,∠BAC=∠DAE60°,

∴∠BAD=∠CAE,且ABAC,ADAE,

∴△ABD≌△ACESAS

∴∠ACE30°=∠ABD

當(dāng)OEEC時(shí),OE的長(zhǎng)度最小,

∵∠OEC90°,∠ACE30°

OE最小值=OCAB1,

故答案為:1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)在邊上,且,點(diǎn)的中點(diǎn),點(diǎn)為邊上的動(dòng)點(diǎn),當(dāng)點(diǎn)上移動(dòng)時(shí),使四邊形周長(zhǎng)最小的點(diǎn)的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,且頂點(diǎn)在直線x=上.

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)若把ABO沿x軸向右平移得到DCE,點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說(shuō)明理由;

(3)在(2)的條件下,連接BD,已知對(duì)稱軸上存在一點(diǎn)P使得PBD的周長(zhǎng)最小,求出P點(diǎn)的坐標(biāo);

(4)在(2)、(3)的條件下,若點(diǎn)M是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)O、B不重合),過(guò)點(diǎn)M作BD交x軸于點(diǎn)N,連接PM、PN,設(shè)OM的長(zhǎng)為t,PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時(shí)M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若要在寬AD20米的城南大道兩邊安裝路燈,路燈的燈臂BC長(zhǎng)2米,且與燈柱AB120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過(guò)公路路面的中心線時(shí)照明效果最好,此時(shí),路燈的燈柱AB高應(yīng)該設(shè)計(jì)為多少米(結(jié)果保留根號(hào))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A-20),B1,0),交y軸于C0,2);
1)求二次函數(shù)的解析式;
2)連接AC,在直線AC上方的拋物線上是否存在點(diǎn)N,使NAC的面積最大,若存在,求出這個(gè)最大值及此時(shí)點(diǎn)N的坐標(biāo),若不存在,說(shuō)明理由.
3)若點(diǎn)Mx軸上,是否存在點(diǎn)M,使以B、CM為頂點(diǎn)的三角形是等腰三角形,若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
4)若P為拋物線上一點(diǎn),過(guò)PPQBCQ,在y軸左側(cè)的拋物線是否存在點(diǎn)P使CPQ∽△BCO(點(diǎn)C與點(diǎn)B對(duì)應(yīng)),若存在,求出點(diǎn)P的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】群芳雅苑花卉基地出售兩種花卉,其中馬蹄蓮每株4.5元,康乃馨每株6元.如果同一客戶所購(gòu)的馬蹄蓮數(shù)量多于1000株,那么所有的馬蹄蓮每株還可優(yōu)惠0.3元.現(xiàn)某鮮花店向群芳雅苑花卉基地采購(gòu)馬蹄蓮8001200株、康乃馨若干株本次采購(gòu)共用了9000元.然后再以馬蹄蓮每株5.5元、康乃馨每株8元的價(jià)格賣出.(注:8001200株表示采購(gòu)株數(shù)大于或等于800株,且小于或等于1200株;利潤(rùn)=銷售所得金額﹣進(jìn)貨所需金額)

1)設(shè)鮮花店銷售完這兩種鮮花獲得的利潤(rùn)為y元,采購(gòu)馬蹄蓮x株,求yx之間的函數(shù)關(guān)系式;

2)若該鮮花店購(gòu)進(jìn)的馬蹄蓮多于1000株,采購(gòu)馬蹄蓮多少時(shí)才能使獲得的利潤(rùn)不少于2890元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:我們學(xué)習(xí)等邊三角形時(shí)得到直角三角形的一個(gè)性質(zhì):在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.即:如圖1,在RtABC中,∠ACB=90°,ABC=30°,則:AC=AB.

探究結(jié)論:小明同學(xué)對(duì)以上結(jié)論作了進(jìn)一步研究.

(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BECE之間的數(shù)量關(guān)系為  

(2)如圖2,點(diǎn)D是邊CB上任意一點(diǎn),連接AD,作等邊ADE,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.試探究線段BEDE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.

(3)當(dāng)點(diǎn)D為邊CB延長(zhǎng)線上任意一點(diǎn)時(shí),在(2)條件的基礎(chǔ)上,線段BEDE之間存在怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論  

拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣,1),點(diǎn)Bx軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等邊ABC,當(dāng)C點(diǎn)在第一象限內(nèi),且B(2,0)時(shí),求C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+6x5x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左邊),與y軸交于點(diǎn)C.點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Px軸的垂線,垂足為點(diǎn)H,交直線BC于點(diǎn)E

1)求點(diǎn)A,B,C的坐標(biāo);

2)連接CP,當(dāng)CP平分∠OCB時(shí),求點(diǎn)P的坐標(biāo);

3)平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)Q,使得以點(diǎn)P,E,B,Q為頂點(diǎn)的四邊形為菱形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣2x+c(c為常數(shù))的對(duì)稱軸如圖所示,且拋物線過(guò)點(diǎn)C(0,c).

(1)當(dāng)c=﹣3時(shí),點(diǎn)(x1,y1)在拋物線y=x2﹣2x+c上,求y1的最小值;

(2)若拋物線與x軸有兩個(gè)交點(diǎn),自左向右分別為點(diǎn)A、B,且OA=OB,求拋物線的解析式;

(3)當(dāng)﹣1<x<0時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案