【題目】如圖,在中,分別以,為邊作等邊三角形和等邊三角形,連接,交于點(diǎn),則的度數(shù)為(

A.B.C.D.

【答案】B

【解析】

先證明DCB≌△ACE,求出∠CAE=∠CDB,再利用“8字型證明∠AOH=∠DCH60°即可解決問題.

解:如圖:ACBD交于點(diǎn)H
∵△ACD,BCE都是等邊三角形,
CDCA,CBCE,∠ACD=∠BCE60°,
∴∠DCB=∠ACE,
DCBACE中,,
∴△DCB≌△ACE
∴∠CAE=∠CDB,
∵∠DCH+∠CHD+∠BDC180°,∠AOH+∠AHO+∠CAE180°,∠DHC=∠OHA,
∴∠AOH=∠DCH60°
∴∠AOB180°AOH120°
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人在玩轉(zhuǎn)盤游戲時(shí),把轉(zhuǎn)盤AB分別分成4等份、3等份,并在每一份內(nèi)標(biāo)上數(shù)字,如圖所示.游戲規(guī)定:轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤停止后,指針必須指到某一數(shù)字,否則重轉(zhuǎn).

1)請(qǐng)用樹狀圖或列表法列出所有可能的結(jié)果;

2)若指針?biāo)傅膬蓚(gè)數(shù)字都是方程x2-5x+6=0的解時(shí),則甲獲勝;若指針?biāo)傅膬蓚(gè)數(shù)字都不是方程x2-5x+6=0的解時(shí),則乙獲勝,問他們兩人誰獲勝的概率大?請(qǐng)分析說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在杭州西湖風(fēng)景游船處,如圖,在離水面高度為5m的岸上,有人用繩子拉船靠岸,開始時(shí)繩子BC的長為13m,此人以0.5m/s的速度收繩.10s后船移動(dòng)到點(diǎn)D的位置,問船向岸邊移動(dòng)了多少m?(假設(shè)繩子是直的,結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D、E、F分別為BC、AD、BE的中點(diǎn),若△BFD的面積為6,則 △ABC的面積等于_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在操場上做游戲,他發(fā)現(xiàn)地上有一個(gè)不規(guī)則的封閉圖形ABC.為了知道它的面積,他在封閉圖形內(nèi)劃出了一個(gè)半徑為1米的圓,在不遠(yuǎn)處向圖形內(nèi)擲石子,且記錄如下:

擲石子次數(shù)石子落在的區(qū)域ABC

50

150

300

石子落在圓內(nèi)(含圓上)的次數(shù)m

14

43

93

石子落在陰影內(nèi)的次數(shù)n

19

85

186

(1)隨著次數(shù)的增多,小明發(fā)現(xiàn)mn的比值在一個(gè)常數(shù)k附近波動(dòng),請(qǐng)你寫出k的值.

(2)請(qǐng)利用學(xué)過的知識(shí)求出封閉圖形ABC的大致面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車由天津駛往相距120千米的北京,(千米)表示汽車離開天津的距離,(小時(shí))表示汽車行駛的時(shí)間.如圖所示:

1)汽車用幾小時(shí)可到達(dá)北京?速度是多少?

2)汽車行駛1小時(shí),離開天津有多遠(yuǎn)?

3)當(dāng)汽車距北京20千米時(shí),汽車出發(fā)了多長時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:若y表示一個(gè)函數(shù),令M=|y|,我們則稱函數(shù)M為函數(shù)y幸福函數(shù)”.

(1)請(qǐng)寫出一次函數(shù)y=x﹣3幸福函數(shù)”M的解析式(解析式中不能含有絕對(duì)值);

(2)若一次函數(shù)y=與反比例函數(shù)y=(k>0)的幸福函數(shù)”M有三個(gè)交點(diǎn),從左至右依次為A,B,C三點(diǎn),并且BC=,求點(diǎn)A的坐標(biāo);

(3)已知a、b為實(shí)數(shù),二次函數(shù)y=x2+ax+b幸福函數(shù)”M,M=2恒有三個(gè)不等的實(shí)數(shù)根.

①求b的最小值;

②若該方程的三個(gè)不等實(shí)根恰為一直角三角形的三條邊,求ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,點(diǎn)EBC的中點(diǎn),若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關(guān)系.解決此問題可以用如下方法:延長AEDC的延長線于點(diǎn)F,從而把ABAD,DC轉(zhuǎn)化在一個(gè)三角形中即可判斷.試探究ABAD,DC之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=,下列結(jié)論:① △APD≌△AEB;② EB⊥ED;③ 點(diǎn)B到直線AE的距離為; ④,其中正確結(jié)論的序號(hào)是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案