【題目】如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點C,AC平分∠DAB.
(1)求證:AD⊥CD;
(2)若AD=2,AC=,求AB的長.
【答案】(1)通過角度變換求證切線(2)2.5
【解析】試題分析:(1)、連接OC,根據(jù)OA=OC得出∠OAC=∠OCA,根據(jù)AC平分∠DAB得到∠OAC=∠DAC,從而說明∠OCA=∠DAC,得到AD∥OC,從而說明切線;(2)、連接CB,根據(jù)AB為直徑得到∠ACB=90°,根據(jù)已知條件得到∠ADC=90°,結合∠DAC=∠CAB得到△DAC∽△CAB,從而得出AB的長度.
試題解析:(1)、連接OC
∵OA=OC ∴∠OAC=∠OCA
∵AC平分∠DAB ∴∠OAC=∠DAC ∴∠OCA=∠DAC ∴AD∥OC
∵直線CD與⊙O相切 ∴OC⊥CD ∴AD⊥CD
(2)、連接CB
∵AB是⊙O直徑 ∴∠ACB=90°
由(1)知AD⊥CD ∴∠ADC=90°∴∠ADC=∠ACB ∵∠DAC=∠CAB ∴△DAC∽△CAB
∴即∴AB="2.5"
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D在線段BC上,∠EDB=∠C,BE⊥DE,垂足為E,DE與AB相交于點F.試探究線段BE與DF的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,半徑為1的⊙A圓心與原點O重合,直線l分別交x軸、y軸于點B、C,若點B的坐標為(6,0),tan∠ABC=.
(1)若點P是⊙A 上的動點,求P到直線BC的最小距離,并求此時點P的坐標;
(2)若點A從原點O出發(fā),以1個單位/秒的速度沿著線路OB→BC→CO運動,回到點O停止運動,⊙A隨著點A的運動而移動.設點A運動的時間為t.
①求⊙A在整個運動過程中與坐標軸相切時t的取值;
②求⊙A在整個運動過程中所掃過的圖形的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列調(diào)查方式,不適合使用全面調(diào)查的是( 。
A. 旅客上飛機前的安檢B. 航天飛機升空前的安檢
C. 了解全班學生的體重D. 了解咸寧市中學生每天使用手機的時間
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com