如圖,A在    ,C在    位置(用經(jīng)緯度表示).
【答案】分析:本圖為地圖上的經(jīng)線和緯線,按照赤道是0°緯線,北邊的為北緯,南邊的為南緯,0°經(jīng)線東邊的為東經(jīng),西邊的為西經(jīng)來認識.
平面內(nèi)的點是用一對有序?qū)崝?shù)來描述的.
解答:解:根據(jù)圖形,A在(東經(jīng)120°,南緯30°);C在(西經(jīng)60°,北緯60°)位置.
點評:本題考查了用一對有序?qū)崝?shù)確定點的位置的方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

7、如圖的轉(zhuǎn)盤被劃分成六個相同大小的扇形,并分別標上1,2,3,4,5,6這六個數(shù)字,指針停在每個扇形的可能性相等,四位同學各自發(fā)表了下述見解:
甲:如果指針前五次都沒停在5號扇形,下次就一定會停在5號扇形了
乙:只要指針連續(xù)轉(zhuǎn)六次,一定會有一次停在1號扇形
丙:指針停在奇數(shù)號扇形的概率和停在偶數(shù)號扇形的概率相等
。哼\氣好的時候,只要在轉(zhuǎn)動前默默想好讓指針停在6號扇形,指針停在6號扇形的可能性就會加大.
其中你認為說法不正確的有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、在圖1-5中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例:
當2b<a時,如圖1,在BA上選取點G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn):
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點F逆時針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實踐探究:
(1)正方形FGCH的面積是
a2+b2
;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖2-圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.

聯(lián)想拓展:
小明通過探究后發(fā)現(xiàn):當b≤a時,此類圖形都能剪拼成正方形,且所選取的點G的位置在BA方向上隨著b的增大不斷上移;當b>a時,如圖5的圖形能否剪拼成一個正方形?若能,請你在圖中畫出剪拼的示意圖;若不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖1,四邊形ABCD是矩形,P是BC邊上的一點,連接PA、PD
(1)求證:PA2+PC2=PB2+PD2
(2)如圖2,當點A在矩形ABCD的內(nèi)部時,連接PA、PB、PC、PD.上面的結(jié)論是否還成立?說明理由.
(3)當點A在矩形ABCD的外部時,連接PA、PB、PC、PD.上面的結(jié)論是否還成立?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在x軸正半軸上以O(shè)B為斜邊、BC為直角邊向第一象限分別作等腰Rt△AOB和Rt△CDB. OA=8,BC=4,在∠ABD內(nèi)有一半徑為1,且與AB、BD相切的⊙P.
(1)寫出⊙P的圓心坐標;
(2)若△CDB在x軸上以每秒2個單位的速度向左勻速平移,⊙P同時相應(yīng)在BA和BD上滑動,且保持與BA、BD相切,至⊙P終止運動.設(shè)運動時間為t秒,試用含t的代數(shù)式表示P點坐標;并證明P點的橫、縱坐標之和為定值;
(3)如圖2,過D點作x軸的平行線交AB于E,D’B’與AB交于M,在滿足(2)的前提下,t取何值時,⊙P可成為△D’EM的內(nèi)切圓;如果⊙P與DE相切于點F,求△AEF的面積.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°,試猜想GE、BE、GD三線段之間的關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件下,若以C為圓心,CD為半徑作圓,試判斷此圓與直線EG的位置關(guān)系,并說明理由;
(3)運用(1)中解答所積累的經(jīng)驗和知識,完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一點,且∠DCE=45°,BE=4,求DE的長.

查看答案和解析>>

同步練習冊答案