【題目】如圖,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.點(diǎn)PA點(diǎn)開(kāi)始沿AB邊向點(diǎn)B1厘米/秒的速度移動(dòng)(到達(dá)點(diǎn)B即停止運(yùn)動(dòng)),點(diǎn)QB點(diǎn)開(kāi)始沿BC邊向點(diǎn)C2厘米/秒的速度移動(dòng)(到達(dá)點(diǎn)C即停止運(yùn)動(dòng)).

(1)如果P,Q分別從A,B兩點(diǎn)同時(shí)出發(fā),經(jīng)過(guò)幾秒鐘,△PBQ的面積等于△ABC面積的三分之一?

(2)如果P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),幾秒鐘后,P,Q相距6厘米?

【答案】(1) 2 秒或4秒;(2) 0秒或2.4秒.

【解析】

(1)設(shè)經(jīng)過(guò)x秒鐘,PBQ的面積等于是ABC的三分之一,分別表示出線(xiàn)段PB和線(xiàn)段BQ的長(zhǎng),然后根據(jù)面積之間的關(guān)系列出方程求得時(shí)間即可;

(2)根據(jù)勾股定理列出方程求解即可;

1)設(shè)t秒后,△PBQ的面積等于是△ABC的三分之一,根據(jù)題意得:

×2t6-t=××6×8,

解得:t=24

答:2秒或4秒后,△PBQ的面積等于是△ABC的三分之一.

2)設(shè)x秒時(shí),PQ相距6厘米,根據(jù)題意得:

6-x2+2x2=36,

解得:x=0x=

答:0秒或秒時(shí),P、Q相距6厘米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)長(zhǎng)為8分米寬為5分米,高為7分米的長(zhǎng)方體上截去一個(gè)長(zhǎng)為6分米,寬為5分米,深為2分米的長(zhǎng)方體后,得到一個(gè)如圖所示的幾何體一只螞蟻要從該幾何體的頂點(diǎn)A處,沿著幾何體的表面到幾何體上和A相對(duì)的頂點(diǎn)B處吃食物,那么它需要爬行的最短路徑的長(zhǎng)是 分米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)y1=與一次函數(shù)y2=k2x+b的圖象交于點(diǎn)A(1,8),B(-4,m)兩點(diǎn).

(1)求k1,k2,b的值;

(2)求△AOB的面積;

(3)請(qǐng)直接寫(xiě)出不等式x+b的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,EAC邊上的一點(diǎn),且AE=AB,∠BAC=2∠CBE,以AB為直徑作⊙OAC于點(diǎn)D,交BE于點(diǎn)F

1)求證:BC⊙O的切線(xiàn);

2)若AB=8,BC=6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y=x2+bx+c的圖象與x軸的一個(gè)交點(diǎn)為B(4,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,4).

(1)求直線(xiàn)BC與拋物線(xiàn)的解析式;

(2)若點(diǎn)M是拋物線(xiàn)在x軸下方圖象上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線(xiàn)BC于點(diǎn)N,當(dāng) MN的值最大時(shí),求△BMN的周長(zhǎng).

(3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線(xiàn)在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=4S2,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)用3000元購(gòu)進(jìn)某種商品,由于銷(xiāo)售狀況良好,商場(chǎng)又用9000元購(gòu)進(jìn)這種商品,但這次的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%,購(gòu)進(jìn)商品比第一次的2倍還多300千克,如果商場(chǎng)按每千克9元出售.

求:(1)該種商品第一次的進(jìn)價(jià)是每千克多少元?

2)超市銷(xiāo)售完這種商品共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ADBC,BE=CE,ABC=2C,BF為B的平分線(xiàn).求證:AB=2DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件50元.當(dāng)售價(jià)為每件70元時(shí),每星期可賣(mài)出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣(mài)出20件.在確保盈利的前提下,解答下列問(wèn)題:

(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫(xiě)出yx的函數(shù)關(guān)系式,并求出自變量x的取值范圍;

(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線(xiàn)C1x軸的一個(gè)交點(diǎn)為A(-1,0),另一個(gè)交點(diǎn)為B,軸的交點(diǎn)為C(0,-3),其頂點(diǎn)為D.

(1)求拋物線(xiàn)C1的解析式;

(2)如圖1,將△OBC沿軸向右平移m個(gè)單位長(zhǎng)度(0﹤)得到另一個(gè)三角形△EFG,將△EFG與△BCD重疊部分(四邊形BPGQ)的面積記為S,用含m的代數(shù)式表示S;

(3)如圖2,將拋物線(xiàn)C1平移,使其頂點(diǎn)為原點(diǎn)O,得到拋物線(xiàn)C2.若直線(xiàn)與拋物線(xiàn)C2交于S、T兩點(diǎn),點(diǎn)是線(xiàn)段ST上一動(dòng)點(diǎn)(不與S、T重合),試探究拋物線(xiàn)C2上是否存在一點(diǎn)R,點(diǎn)R關(guān)于點(diǎn)N的中心對(duì)稱(chēng)點(diǎn)K也在拋物線(xiàn)C2.

查看答案和解析>>

同步練習(xí)冊(cè)答案