在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(cm)與燃燒時間x(h)的關(guān)系如圖所示.請根據(jù)圖象所提供的信息解答下列問題:
(1)甲、乙兩根蠟燭燃燒前的高度分別是______,從點(diǎn)燃到燃盡所用的時間分別是______;
(2)分別求甲、乙兩根蠟燭燃燒時y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)x為何值時,甲、乙兩根蠟燭在燃燒過程中的高度相等.
(1)30cm,25cm;2h,2.5h;

(2)設(shè)甲蠟燭燃燒時y與x之間的函數(shù)關(guān)系式為y=k1x+b1
由圖可知,函數(shù)的圖象過點(diǎn)(2,0),(0,30),
2k1+b1=0
b1=30
解得
k1=-15
b1=30

∴y=-15x+30
設(shè)乙蠟燭燃燒時y與x之間的函數(shù)關(guān)系式為y=k2x+b2,
由圖可知,函數(shù)的圖象過點(diǎn)(2.5,0),(0,25),
2.5k2+b2=0
b2=25
解得
k2=-10
b2=25

∴y=-10x+25

(3)由題意得-15x+30=-10x+25,解得x=1
∴當(dāng)甲、乙兩根蠟燭燃燒1h的時候高度相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)圖象如圖,寫出它的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

教室里放有一臺飲水機(jī)(如圖),飲水機(jī)上有兩個放水管.課間同學(xué)們依次到飲水機(jī)前用茶杯接水.假設(shè)接水過程中水不發(fā)生潑灑,每個同學(xué)所接的水量都是相等的.兩個放水管同時打開時,他們的流量相同.放水時先打開一個水管,過一會兒,再打開第二個水管,放水過程中閥門一直開著.飲水機(jī)的存水量y(升)與放水時間x(分鐘)的函數(shù)關(guān)系如圖所示:
(1)求出飲水機(jī)的存水量y(升)與放水時間x(分鐘)(x≥2)的函數(shù)關(guān)系式;
(2)如果打開第一個水管后,2分鐘時恰好有4個同學(xué)接水結(jié)束,則前22個同學(xué)接水結(jié)束共需要幾分鐘?
(3)按(2)的放法,求出在課間10分鐘內(nèi)班級中最多有多少個同學(xué)能及時接完水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B兩地的路程為240千米.某經(jīng)銷商每天都要用汽車或火車將x噸保鮮品一次性由A地運(yùn)往B地.受各種因素限制,下一周只能采用汽車和火車中的一種進(jìn)行運(yùn)輸,且須提前預(yù)訂.
現(xiàn)有貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表、行駛路程s(千米)與行駛時間t(時)的函數(shù)圖象(如圖1)、上周貨運(yùn)量折線統(tǒng)計(jì)圖(如圖2)等信息如下:
貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表
(1)汽車的速度為______千米/時,火車的速度為______千米/時:
(2)設(shè)每天用汽車和火車運(yùn)輸?shù)目傎M(fèi)用分別為y(元)和y(元),分別求y、y與x的函數(shù)關(guān)系式(不必寫出x的取值范圍),當(dāng)x為何值時,y>y(總費(fèi)用=運(yùn)輸費(fèi)+冷藏費(fèi)+固定費(fèi)用)
(3)請你從平均數(shù)、折線圖走勢兩個角度分析,建議該經(jīng)銷商應(yīng)提前為下周預(yù)定哪種運(yùn)輸工具,才能使每天的運(yùn)輸總費(fèi)用較?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在一次遠(yuǎn)足活動中,小聰和小明由甲地步行到乙地后原路返回,小明在返回的途中的丙地時發(fā)現(xiàn)物品可能遺忘在乙地,于是從丙返回乙地,然后沿原路返回.兩人同時出發(fā),步行過程中保持勻速.設(shè)步行的時間為t(h),兩人離甲地的距離分別為S1(km)和S2(km),圖中的折線分別表示S1、S2與t之間的函數(shù)關(guān)系.則下列說法中正確的是( 。
A.甲、乙兩地之間的距離為20km
B.乙、丙兩地之間的距離為4km
C.小明由甲地出發(fā)首次到達(dá)乙地的時間為
5
6
小時
D.小明乙地到達(dá)丙地用了
1
8
小時

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

實(shí)際運(yùn)用
玉樹地震牽掛著千家萬戶,某單位安排甲、乙兩車先后分別以60km/h的速度從M地將一批救災(zāi)物質(zhì)運(yùn)往N地裝備.兩車出發(fā)后,發(fā)貨站發(fā)現(xiàn)甲車遺漏一件物品,遂派丙車將遺漏物品送達(dá)甲車,丙車完成任務(wù)后即沿原路原速返回(物品交接時間不計(jì)).如圖表示三輛車離M地的距離s(km)隨時間t(min)變化的圖象.請根據(jù)圖象回答:
(1)說明圖中點(diǎn)B的實(shí)際意義;
(2)丙車出發(fā)多長時間后追上甲車?
(3)丙車與乙車在距離M地多遠(yuǎn)處迎面相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線l的解析式為y=-
4
3
x+4,它與x軸、y軸分別相交于A、B兩點(diǎn),平行于直線l的直線m從原點(diǎn)O出發(fā),沿x軸的正方向以每秒1個單位長度的速度運(yùn)動,它與x軸、y軸分別相交于M、N兩點(diǎn),運(yùn)動時間為t秒(0<t≤3)
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)以MN為對角線作矩形OMPN,記△MPN和△OAB重合部分的面積為S,試探究S與t之間的函數(shù)關(guān)系;
(3)當(dāng)S=2時,是否存在點(diǎn)R,使△RNM△AOB?若存在,求出R的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在平面直角坐標(biāo)系xoy中,一次函數(shù)y=
3
4
x+3
的圖象與x軸和y軸交于A、B兩點(diǎn),將△AOB繞點(diǎn)O順時針旋轉(zhuǎn)90°后得到△A′OB′.
(1)分別求出點(diǎn)A′、B′的坐標(biāo);
(2)若直線A′B′與直線AB相交于點(diǎn)C,求S四邊形OB?CB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,△ABC為等腰三角形,AB=AC,將△AOC沿直線AC折疊,點(diǎn)O落在直線AD上的點(diǎn)E處,直線AD的解析式為y=-
3
4
x+6
,則
(1)AO=______;AD=______;OC=______;
(2)動點(diǎn)P以每秒1個單位的速度從點(diǎn)B出發(fā),沿著x軸正方向勻速運(yùn)動,點(diǎn)Q是射線CE上的點(diǎn),且∠PAQ=∠BAC,設(shè)P運(yùn)動時間為t秒,求△POQ的面積S與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,直線CE上是否存在一點(diǎn)Q,使以點(diǎn)Q、A、D、P為頂點(diǎn)的四邊形是平等四邊形?若存在,求出t值及Q點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案