【題目】過(guò)反比例函數(shù) y= (k < 0)的圖象上一點(diǎn) A x 軸的垂線交 x 軸于點(diǎn) B O 為坐標(biāo)原點(diǎn), 且△ABO 的面積 SABO = 4

1)求 k 的值;

2)若二次函數(shù) y = ax2 與反比例函數(shù) y= (k < 0)的圖象交于點(diǎn)C(-2,m) ,請(qǐng)結(jié)合函數(shù)的圖象寫出滿足 ax2< x的取值范圍.

【答案】1-8;(2-2<x<0

【解析】

(1)設(shè)點(diǎn)A的坐標(biāo)為 (),根據(jù)反比例函數(shù)的幾何意義,即可得出k的值;
(2),可求出m的值,即得出點(diǎn)C的坐標(biāo),將點(diǎn)C的坐標(biāo)代入二次函數(shù)的解析式中求出a值,畫出圖形,結(jié)合圖象即可得出結(jié)論.

(1)設(shè)點(diǎn)A的坐標(biāo)為(),
A是反比例函數(shù)的圖象上的一點(diǎn),

∵△ABO的面積是4,
,

由題知,

;

(2)由(1)知,反比例函數(shù)為,

∵二次函數(shù)與反比例函數(shù)的圖象交于第二象限的點(diǎn)

,函數(shù)圖象如圖,

根據(jù)圖象可知當(dāng)時(shí),拋物線在反比例函數(shù)圖象的下方,

∴不等式的解集為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每個(gè)人都應(yīng)懷有對(duì)水的敬畏之心,從點(diǎn)滴做起,節(jié)水、愛(ài)水,保護(hù)我們生活的美好世界.某地近年來(lái)持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了“階梯水價(jià)”計(jì)費(fèi)方法,具體方法:每戶每月用水量不超過(guò)4噸的每噸2元;超過(guò)4噸而不超過(guò)6噸的,超出4噸的部分每噸4元;超過(guò)6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個(gè)月的月用水量如下表,下列關(guān)于用水量的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是( 。

用水量x(噸)

3

4

5

6

7

頻數(shù)

1

2

5

4﹣x

x

A. 平均數(shù)、中位數(shù) B. 眾數(shù)、中位數(shù) C. 平均數(shù)、方差 D. 眾數(shù)、方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB

1)求證:P為線段AB的中點(diǎn);

2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,直徑垂直于弦,垂足為,連結(jié),將沿翻轉(zhuǎn)得到,直線與直線相交于點(diǎn)

1)求證:的切線;

2)若的中點(diǎn),,求的半徑長(zhǎng);

3)①求證:

②若的面積為,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種火爆的網(wǎng)紅電子產(chǎn)品,每件產(chǎn)品成本元、工廠將該產(chǎn)品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(jià)(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關(guān)系.

直接寫出之間所滿足的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

若一次性批發(fā)量不超過(guò)件,當(dāng)批發(fā)量為多少件時(shí),工廠獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E是邊AD上的點(diǎn),EFBE,交邊CD于點(diǎn)F,聯(lián)結(jié)CE、BF,如果tanABE,那么CEBF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙和⊙相交于A、B兩點(diǎn),AB交于點(diǎn)C,的延長(zhǎng)線交⊙于點(diǎn)D,點(diǎn)EAD的中點(diǎn),AE=AC,聯(lián)結(jié)

(1)求證:;

(2)如果,,求⊙的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸交于點(diǎn)C0,2),它的頂點(diǎn)為D1,m),且.

1)求m的值及拋物線的表達(dá)式;

2)將此拋物線向上平移后與x軸正半軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=OB.若點(diǎn)A是由原拋物線上的點(diǎn)E平移所得,求點(diǎn)E的坐標(biāo);

(3)在(2)的條件下,點(diǎn)P是拋物線對(duì)稱軸上的一點(diǎn)(位于x軸上方),且APB=45°.求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)要建一個(gè)飼養(yǎng)場(chǎng)(長(zhǎng)方形,飼養(yǎng)場(chǎng)的一面靠墻(墻最大可用長(zhǎng)度為27米),另三邊用木欄圍成,中間也用木欄隔開(kāi),分成兩個(gè)場(chǎng)地,并在如圖所示的三處各留1米寬的門(不用木欄),建成后木欄總長(zhǎng)60米,設(shè)飼養(yǎng)場(chǎng)(長(zhǎng)方形的寬為米.

1)求飼養(yǎng)場(chǎng)的長(zhǎng)(用含的代數(shù)式表示).

2)若飼養(yǎng)場(chǎng)的面積為,求的值.

3)當(dāng)為何值時(shí),飼養(yǎng)場(chǎng)的面積最大,此時(shí)飼養(yǎng)場(chǎng)達(dá)到的最大面積為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案