將一個直角三角板和一把直尺如圖放置,如果∠α=43°,則∠β的度數(shù)是_____.

 

【答案】

47°

【解析】

試題分析:首先過點(diǎn)C作CH∥DE交AB于H,即可得CH∥DE∥FG,然后利用兩直線平行,同位角相等與余角的性質(zhì),即可求得∠β的度數(shù).

解:如圖,過點(diǎn)C作CH∥DE交AB于H

根據(jù)題意得:∠ACB=90°,DE∥FG,

∴CH∥DE∥FG,

∴∠BCH=∠α=43°,

∴∠HCA=90°-∠BCH=47°,

∴∠β=∠HCA=47°.

考點(diǎn):平行線的性質(zhì)

點(diǎn)評:此題難度不大,解題的關(guān)鍵是準(zhǔn)確作出輔助線,掌握兩直線平行,同位角相等定理的應(yīng)用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•盤錦)如圖,將一副三角板和一張對邊平行的紙條按下列方式擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點(diǎn)在紙條的另一邊上,則∠1的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•如東縣一模)將一個直角三角板和一把矩形直尺按如圖放置,若∠α=55°,則∠β的度數(shù)是
35°
35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鷹潭模擬)某校九年級(1)班數(shù)學(xué)興趣小組開展了一次活動,過程如下:
如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小明將一塊直角三角板的直角頂點(diǎn)放在斜邊BC邊的中點(diǎn)O上,從BC邊開始繞點(diǎn)A順時(shí)針旋轉(zhuǎn),其中三角板兩條直角邊所在的直線分別交AB、AC于點(diǎn)E、F.
(1)小明在旋轉(zhuǎn)中發(fā)現(xiàn):在圖1中,線段AE與CF相等.請你證明小明發(fā)現(xiàn)的結(jié)論;
(2)小明將一塊三角板中含45°角的頂點(diǎn)放在點(diǎn)A上,從BC邊開始繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一個角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.當(dāng)0°<α≤45°時(shí),小明在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:
BD2+CE2=DE2.同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決:
小穎的方法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2);
小亮的方法:將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3).
請你從中任選一種方法進(jìn)行證明;
(3)小明繼續(xù)旋轉(zhuǎn)三角板,在探究中得出:當(dāng)45°<α<135°且α≠90°時(shí),等量關(guān)系BD2+CE2=DE2仍然成立.現(xiàn)請你繼續(xù)探究:當(dāng)135°<α<180°時(shí)(如圖4),等量關(guān)系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(遼寧盤錦卷)數(shù)學(xué)(解析版) 題型:選擇題

如圖,將一副三角板和一張對邊平行的紙條按下列方式擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點(diǎn)在紙條的另一邊上,則∠1的度數(shù)是

A.30°              B.20°                C.15°       D.14°

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年遼寧省盤錦市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,將一副三角板和一張對邊平行的紙條按下列方式擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點(diǎn)在紙條的另一邊上,則∠1的度數(shù)是( )

A.30°
B.20°
C.15°
D.14°

查看答案和解析>>

同步練習(xí)冊答案