【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD,BC上,頂點F,H在菱形ABCD的對角線BD上.
(1)求證:BG=DE;
(2)若E為AD中點,FH=2,求菱形ABCD的周長.
【答案】(1)詳見解析;(2)8
【解析】
(1)先根據(jù)矩形的性質(zhì)、平行線的性質(zhì)得出,再根據(jù)鄰補角的定義可得,又根據(jù)菱形的性質(zhì)、平行線的性質(zhì)可得,最后根據(jù)三角形全等的判定定理與性質(zhì)即可得證;
(2)如圖,連接EG,先根據(jù)矩形的性質(zhì)可得EG的長,再根據(jù)中點的性質(zhì)、菱形的性質(zhì)、題(1)的結(jié)論可得四邊形ABGE是平行四邊形,從而可得AB的長,然后根據(jù)菱形的周長公式即可得.
(1)∵四邊形EFGH是矩形
∵四邊形ABCD是菱形
在和中,
;
(2)如圖,連接EG
∵四邊形EFGH是矩形,
∵四邊形ABCD是菱形
∵E為AD中點
∴四邊形ABGE是平行四邊形
∴菱形ABCD的周長為
故菱形ABCD的周長為8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某個體水果店經(jīng)營某種水果,進價2.60元/千克,售價3.40元/千克,10月1日至10月5日經(jīng)營情況如下表
(1) 若9月30日的庫存為10kg,則10月2日的庫存為 。
(2) 就10月3日經(jīng)營情況看,當(dāng)天是賺了還是賠了。
(3) 每天交衛(wèi)生費1元,則10月1日至10月5日該個體戶共賺多少錢。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( 。
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在的右倒,平分,平分,,所在直線交于點,.
(1)求的度數(shù).
(2)若,求的度數(shù)(用含的代數(shù)式表示).
(3)將線段沿方向平移,使得點在點的右側(cè),其他條件不變,在圖中畫出平移后的圖形,并判斷的度數(shù)是否發(fā)生改變?若改變,求出它的度數(shù)(用含的式子表示);若不改變,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高中學(xué)生身體素質(zhì),學(xué)校開設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學(xué)生對這四種體育活動的喜歡情況,在全校隨機抽取若干名學(xué)生進行問卷調(diào)查(每個被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種),將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).
(1)這次調(diào)查中,一共調(diào)查了________名學(xué)生;
(2)請補全兩幅統(tǒng)計圖;
(3)若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊外出參加一次聯(lián)誼活動,欲從中選出2人擔(dān)任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=(x>0)的圖象經(jīng)過點A、B,點B的坐標(biāo)為(2,2).過點A作AC⊥x軸,垂足為C,過點B作BD⊥y軸,垂足為D,AC與BD交于點F.一次函數(shù)y=ax+b的圖象經(jīng)過點A、D,與x軸的負半軸交于點E
(1)若AC=OD,求a、b的值;
(2)若BC∥AE,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC=3,D為BC邊的中點,∠MDN=90°,將∠MDN繞點D順時針旋轉(zhuǎn),它的兩邊分別交AB、AC于點E、F.
(1)求證:△ADE ≌ △CDF;
(2)求四邊形AEDF的面積;
(3)如圖2,連接EF,設(shè)BE=x,求△DEF的面積S與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+1經(jīng)過點(2,6),且與直線y=x+1相交于A,B兩點,點A在y軸上,過點B作BC⊥x軸,垂足為點C(4,0).
(1)求拋物線的解析式;
(2)若P是直線AB上方該拋物線上的一個動點,過點P作PD⊥x軸于點D,交AB于點E,求線段PE的最大值;
(3)在(2)的條件,設(shè)PC與AB相交于點Q,當(dāng)線段PC與BE相互平分時,請求出點Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com