【題目】如圖,已知AB是⊙O的直徑,且AB=4,點(diǎn)C在半徑OA上(點(diǎn)C與點(diǎn)O、點(diǎn)A不重合),過點(diǎn)CAB的垂線交⊙O于點(diǎn)D.連接OD,過點(diǎn)BOD的平行線交⊙O于點(diǎn)E,交CD的延長線于點(diǎn)F.

(1)若點(diǎn)E的中點(diǎn),求∠F的度數(shù);

(2)求證:BE=2OC;

(3)設(shè)AC=x,則當(dāng)x為何值時(shí)BEEF的值最大?最大值是多少?

【答案】(1)F=30°;(2)見解析;(3)當(dāng)x= 時(shí),最大值=9.

【解析】分析:

(1)如圖,連接OE,由OD∥OE可得∠DOE=∠OEB,由點(diǎn)E的中點(diǎn)可得∠DOE=∠BOE,由OB=OE可得∠OBE=∠OEB,由此可得∠OBE=∠OEB=∠BOE=60°,結(jié)合CF⊥AB即可得到∠F=30°;

(2)過點(diǎn)OOM⊥BE于點(diǎn)M,由此可得BE=2BM,再證△OBM≌△DOC可得BM=OC,這樣即可得到結(jié)論BE=2OC;

(3)OD∥BF可得△COD∽△CBF,由此可得,由AB=4,AC=x結(jié)合(2)中結(jié)論可得OD=OB=BE=2,BC=4-x,OC=2-x,BE=2OC=4-2x,由此即可解得BF=,從而可得EF=BF-BE=這樣即可把BEEF用含x的代數(shù)式表達(dá)出來,化簡配方即可求得所求答案了.

詳解

(1)如圖1,連接OE.

∴∠BOE=∠EOD,

∵OD∥BF,

∴∠DOE=∠BEO,

∵OB=OE,

∴∠OBE=∠OEB,

∴∠OBE=∠OEB=∠BOE=60°,

∵CF⊥AB,

∴∠FCB=90°,

∴∠F=30°;

(2)如圖1,OOM⊥BEM,

∵OB=OE,

∴BE=2BM,

∵OD∥BF,

∴∠COD=∠B,

△OBM△DOC

∴△OBM≌△DOC,

∴BM=OC,

∴BE=2OC;

(3)∵OD∥BF,

∴△COD∽△CBF,

∵AC=x,AB=4,

∴OA=OB=OD=2,

∴OC=2﹣x,BE=2OC=4﹣2x,

,

∴BF=,

∴EF=BF﹣BE=,

∴BEEF=

當(dāng)時(shí),最大值=9.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】趙老師是一名健步走運(yùn)動(dòng)的愛好者為備戰(zhàn)2019中國地馬拉松系列賽·廣元站10千米群眾健身賽,她用手機(jī)軟件記錄了某個(gè)月(30天)每天健步走的步數(shù)(單位:萬步),將記錄結(jié)果繪制成了如圖所示的統(tǒng)計(jì)圖在每天健步走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是(

A. 2.22.3B. 2.4,2.3C. 2.4,2.35D. 2.32.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以正方形ABCD的邊BC為直徑作半圓O,過點(diǎn)D作直線與半圓相切于點(diǎn)F,交AB于點(diǎn)E,若AB=2cm,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCDEBC邊上一點(diǎn),且AB=AE,AEDC的延長線相交于點(diǎn)F.

(1)若∠F=62°,求∠D的度數(shù);

(2)BE=3EC,且EFC的面積為1,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,,直線經(jīng)過點(diǎn),分別過點(diǎn),作直線的垂線,垂足分別為點(diǎn),,若,,則線段的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用黑白兩種顏色的正六邊形地磚按如下所示的規(guī)律拼成若干個(gè)圖案:第(4)個(gè)圖案中有黑色地磚4塊;那么第(n)個(gè)圖案中有白色地磚________

1 2 3

A.nB.6nC.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)C在直線AB上,,,點(diǎn)M,N分別是AC,BC的中點(diǎn),畫出線段示意圖并求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)是對(duì)角線的中點(diǎn),點(diǎn)上,且,連接并延長交于點(diǎn)F.過點(diǎn)的垂線,垂足為,交于點(diǎn)

1)求證:

2)若

①求證:;

②探索的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點(diǎn)、數(shù)b的點(diǎn)與原點(diǎn)的距離相等.

(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;

(2)|b-1|+|a-1|=________;

(3)化簡:|a+b|+|a-c|-|b|+|b-c|.

查看答案和解析>>

同步練習(xí)冊答案