【題目】平面直角坐標(biāo)系中,存在點(diǎn)A(2,2),B(-6,-4),C(2,-4).則△ABC的外接圓的圓心坐標(biāo)為 , △ABC的外接圓在x軸上所截的弦長為

【答案】(-2,-1);
【解析】在平面直角坐標(biāo)中標(biāo)出點(diǎn)A(2,2),B(-6,-4),C(2,-4),
可得ABC是一個(gè)直角三角形,
所以ABC的外心O是AB的中點(diǎn),則外心O的坐標(biāo)為 , 即(-2,-1);
作OFx軸,則外心到x軸的距離是OF=1,且ABC的外接圓半徑為 ,
則弦長DE=2×.
所以答案是(-2,-1);4 .

【考點(diǎn)精析】本題主要考查了圓心角、弧、弦的關(guān)系和三角形的外接圓與外心的相關(guān)知識(shí)點(diǎn),需要掌握在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DBAC,且DB=AC,EAC的中點(diǎn),

1)求證:BC=DE;

2)連接ADBE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡求值:

(1).先化簡,再求值:3a2(4a22a1)2(3a2a1),其中a1

(2). A3a26abb2B2b25aba2,C=-4a2abb2,先化簡,再求值:A[B(AB3C)](AB),其中 a=-0.2,b=-0.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E正方形ABCD外一點(diǎn),點(diǎn)F是線段AE上一點(diǎn),△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.

(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,中線BE,CD相交于點(diǎn)O,連接DE,則下列判斷錯(cuò)誤的是( )

A.DE是△ABC的中位線
B.點(diǎn)O是△ABC的重心
C.△DEO∽△CBO
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A,B在數(shù)軸上表示的數(shù)分別是m,n.

(1)填寫下表:

(2)若A,B兩點(diǎn)間的距離為d,寫出dm,n之間的數(shù)量關(guān)系.

(3)在數(shù)軸上標(biāo)出所有符合條件的整數(shù)點(diǎn)P,使它到5-5的距離之和為10,并求出所有這些整數(shù)的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ΔABC在坐標(biāo)平面內(nèi)的頂點(diǎn)C(2,0),∠ACB=90°,∠B=30°,AB=6,∠BCD=45°。①求A、B的坐標(biāo);②求AB中點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次數(shù)學(xué)活動(dòng)課上,老師留下了這樣一道題“任畫一個(gè)△ABC,以BC的中點(diǎn)O為對稱中心,作△ABC的中心對稱圖形,問△ABC與它的中心對稱圖形拼成了一個(gè)什么形狀的特殊四邊形?并說明理由.”

于是大家討論開了,小亮說:“拼成的是平行四邊形”; 小華說:“拼成的是矩形”;

小強(qiáng)說:“拼成的是菱形”; 小紅說:“拼成的是正方形”;其他同學(xué)也說出了自己的看法……你贊同他們中的誰的觀點(diǎn)?為什么?若都不贊同,請說出你的觀點(diǎn)(畫出圖形),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的網(wǎng)格紙中,建立了平面直角坐標(biāo)系xOy,點(diǎn)P(1,2),點(diǎn)A(2,5),B(-2,5),C(-2,3).

(1)以點(diǎn)P為對稱中心,畫出△A′B′C′,使△A′B′C′與△ABC關(guān)于點(diǎn)P對稱,并寫出下列點(diǎn)的坐標(biāo):B′________,C′________;

(2)多邊形ABCA′B′C′的面積是__________

查看答案和解析>>

同步練習(xí)冊答案