【題目】(2017四川省達州市,第16題,3分)如圖,矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取點O,以O為圓心,OF長為半徑作⊙O與AD相切于點P.若AB=6,BC=,則下列結論:①F是CD的中點;②⊙O的半徑是2;③AE=CE;④.其中正確結論的序號是__________.
【答案】①②④.
【解析】解:①∵AF是AB翻折而來,∴AF=AB=6.∵AD=BC=,∴DF==3,∴F是CD中點;∴①正確;
②連接OP,∵⊙O與AD相切于點P,∴OP⊥AD.∵AD⊥DC,∴OP∥CD,∴ ,設OP=OF=x,則,解得:x=2,∴②正確;
③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF.∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③錯誤;
④連接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊△.同理△OPG為等邊△,∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG==,∴④正確;
故答案為:①②④.
科目:初中數(shù)學 來源: 題型:
【題目】下表所示是2019年元月的月歷表.下列結論:
①每一豎列上相鄰的兩個數(shù),下面的數(shù)比上面的數(shù)大7;
②可以框出一豎列上相鄰的三個數(shù)(如圖所示),這三個數(shù)的和是24;
③不可以框出一個2×2的矩形塊的四個數(shù)(如圖所示),這四個數(shù)的和是82;
④任意框出一個3×3的矩形塊的九個數(shù)(如圖所示),這九個數(shù)的和是中間數(shù)的9倍,其中正確的是_____(把所有正確的序號都填上).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的角平分線,、分別是邊、的中點,連接、,在不再連接其他線段的前提下,要使四邊形成為菱形,還需添加一個條件,這個條件不可能是( )
A. BD=DC B. AB=AC
C. AD=BC D. AD⊥BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】碼頭工人每天往一艘輪船上裝載貨物,裝載速度y(噸/天)與裝完貨物所需時間x(天)之間的函數(shù)關系如圖.
(1)求y與x之間的函數(shù)表達式;
(2)由于遇到緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸多少噸貨物?
(3)若原有碼頭工人10名,裝載完畢恰好用了8天時間,在(2)的條件下,至少需要增加多少名工人才能完成任務?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜加工公司先后兩批收購蒜苔(tái)共100噸,第一批蒜苔價格為1萬元/噸;因蒜苔大量上市,第二批價格跌至0.4萬元/噸,這兩批蒜苔共用去52萬元.
(1)求兩批各購進蒜苔多少噸?
(2)公司收購后對蒜苔進行加工,分為粗加工和精加工兩種.粗加工每噸利潤400元,精加工每噸利潤1600元要求精加工數(shù)量不大于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應為多少噸?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進行了以下探索:
設(其中、、、均為整數(shù)),則有.
,.這樣小明就找到了一種把類似的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當、、、均為正整數(shù)時,若,用含、的式子分別表示、,得: , ;
(2)利用所探索的結論,找一組正整數(shù)、、、填空: ;
(3)若,且、、均為正整數(shù),求的值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一張長與寬之比為的矩形紙片ABCD進行如下操作:對折并沿折痕剪開,發(fā)現(xiàn)每一次所得到的兩個矩形紙片長與寬之比都是(每一次的折痕如下圖中的虛線所示).已知AB=1,則第3次操作后所得到的其中一個矩形紙片的周長是 ;第2016次操作后所得到的其中一個矩形紙片的周長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在數(shù)軸上點表示數(shù),點表示數(shù),點表示數(shù),是多項式的一次項系數(shù),是絕對值最小的整數(shù),單項式的次數(shù)為.
(1)= ,= ,= ;
(2)若將數(shù)軸在點處折疊,則點與點 重合( 填“能”或“不能”);
(3)點開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向右運動,同時,點 和點分別以每秒3個單位長度和2個單位長度的速度向左運動,秒鐘過后,若點與點B之間的距離表示為,點與點之間的距離表示為,則= , = (用含的代數(shù)式表示);
(4)請問:AB+BC的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com