【題目】如圖,長方形 的頂點(diǎn) 的坐標(biāo)為 ,動(dòng)點(diǎn) 從原點(diǎn) 出發(fā),以每秒 個(gè)單位的速度沿折線 運(yùn)動(dòng),到點(diǎn) 時(shí)停止,同時(shí),動(dòng)點(diǎn) 從點(diǎn) 出發(fā),以每秒 個(gè)單位的速度在線段 上運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)停止時(shí),另一個(gè)點(diǎn)也隨之停止.在運(yùn)動(dòng)過程中,當(dāng)線段 恰好經(jīng)過點(diǎn) 時(shí),運(yùn)動(dòng)時(shí)間 的值是 .
【答案】2或5
【解析】設(shè)直線 的方程為 .
∵矩形 的頂點(diǎn) 的坐標(biāo)為 ,
∴ , .
①當(dāng)點(diǎn) 在線段 上,即 時(shí),
如圖,
、 .
∵直線 經(jīng)過點(diǎn) ,
∴ .解得 .
②當(dāng)點(diǎn) 在線段 上,即 時(shí),
如圖, 、 .
∵直線 經(jīng)過點(diǎn) ,
∴ ,方程組無解.
③當(dāng)直線 軸時(shí),即 時(shí),該直線 也經(jīng)過點(diǎn) ,此時(shí) ,
綜上所述, 的值是 或 .
【考點(diǎn)精析】掌握一次函數(shù)的圖象和性質(zhì)是解答本題的根本,需要知道一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一個(gè)內(nèi)角為90°,且對(duì)角線相等的四邊形稱為準(zhǔn)矩形.
(1)①如圖1,準(zhǔn)矩形ABCD中,∠ABC=90°,若AB=2,BC=3,則BD=;
②如圖2,直角坐標(biāo)系中,A(0,3),B(5,0),若整點(diǎn)P使得四邊形AOBP是準(zhǔn)矩形,則點(diǎn)P的坐標(biāo)是;(整點(diǎn)指橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn))
(2)如圖2,正方形ABCD中,點(diǎn)E、F分別是邊AD、AB上的點(diǎn),且CF⊥BE,求證:四邊形BCEF是準(zhǔn)矩形;
(3)已知,準(zhǔn)矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,當(dāng)△ADC為等腰三角形時(shí),請(qǐng)直接寫出這個(gè)準(zhǔn)矩形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn) P(﹣7,3)是由點(diǎn)M先向左平移動(dòng)3個(gè)單位,再向下平移動(dòng)3個(gè)單位而得到,則M的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】使(x2+px+8)(x2﹣3x+q)乘積中不含x2與x3項(xiàng)的p、q的值是( )
A.p=0,q=0
B.p=3,q=1
C.p=﹣3,q=﹣9
D.p=﹣3,q=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1經(jīng)過A(-1,0),B(1,1)兩點(diǎn).
(1)求該拋物線的解析式;
(2)閱讀理解:
在同一平面直角坐標(biāo)系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1·k2=-1.
解決問題:
①若直線y=3x-1與直線y=mx+2互相垂直,求m的值;
②是否存在點(diǎn)P,使得△PAB是以AB為直角邊的直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)M是拋物線上一動(dòng)點(diǎn),且在直線AB的上方(不與A,B重合),求點(diǎn)M到直線AB的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 的一邊 為平面鏡, ,在 上有一點(diǎn) ,從 點(diǎn)射出一束光線經(jīng) 上一點(diǎn) 反射,反射光線 恰好與 平行,則 的度數(shù)是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國魏晉時(shí)期的數(shù)學(xué)家劉徽創(chuàng)立了“割圓術(shù)”,認(rèn)為圓內(nèi)接正多邊形邊數(shù)無限增加時(shí),周長就越接近圓周長,由此求得了圓周率的近似值.設(shè)半徑為的圓內(nèi)接正邊形的周長為,圓的直徑為.如右圖所示,當(dāng)時(shí),,那么當(dāng)時(shí), .(結(jié)果精確到,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下列各組數(shù)據(jù)為三角形三邊,能構(gòu)成直角三角形的是( )
A. 4m,8m,7m B. 2m,2m,2m C. 2m,2m,4m D. 13m,12m,5m
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com