【題目】在平面直角坐標系中,一次函數(shù)的圖象與軸負半軸交于點,與軸正半軸交于點,點為直線上一點,,點為軸正半軸上一點,連接,的面積為48.
(1)如圖1,求點的坐標;
(2)如圖2,點分別在線段上,連接,點的橫坐標為,點的橫坐標為,求與的函數(shù)關系式(不要求寫出自變量的取值范圍);
(3)在(2)的條件下,如圖3,連接,點為軸正半軸上點右側一點,點為第一象限內一點,,,延長交于點,點為上一點,直線經過點和點,過點作,交直線于點,連接,請你判斷四邊形的形狀,并說明理由.
【答案】(1)B(6,0);(2)d=;(3)四邊形是矩形,理由見解析
【解析】
(1)作DL⊥y軸垂足為L點,DI⊥AB垂足為I,證明△DLC≌△AOC,求得D(2,12),再由S△ABD=ABDI=48,求得OB=ABAO=82=6,即可求B坐標;
(2)設∠MNB=∠MBN=α,作NK⊥x軸垂足為K,MQ⊥AB垂足為Q,MP⊥NK,垂足為P;證明四邊形MPKQ為矩形,再證明△MNP≌△MQB,求出BD的解析式為y=3x+18,MQ=d,把y=d代入y=3x+18得d=3x+18,表達出OQ的值,再由OQ=OK+KQ=t+d,可得d=;
(3)作NW⊥AB垂足為W,證明△ANW≌△CAO,根據邊的關系求得N(4,2);延長NW到Y,使NW=WY,作NS⊥YF,再證明△FHN≌△FSN,可得SF=FH=,NY=2+2=4;設YS=a,FY=FN=a+,在Rt△NYS和Rt△FNS中利用勾股定理求得FN;在Rt△NWF中,利用勾股定理求出WF=6,得到F(10,0);設GF交y軸于點T,設FN的解析式為y=px+q(p≠0)把F(10,0)N(4,2)代入即可求出直線FN的解析式,聯(lián)立方程組得到G點坐標;把G點代入得到y=x+3,可知R(4,0),證明△GRA≌△EFR,可得四邊形AGFE為平行四邊形,再由∠AGF=180°∠CGF=90°,可證明平行四邊形AGFE為矩形.
解:(1)令x=0,y=6,令y=0,x=2,
∴A(2,0),B(0,6),
∴AO=2,CO=6,
作DL⊥y軸垂足為L點,DI⊥AB垂足為I,
∴∠DLO=∠COA=90°,∠DCL=∠ACO,DC=AC,
∴△DLC≌△AOC(AAS),
∴DL=AO=2,
∴D的橫坐標為2,
把x=2代入y=3x+6得y=12,
∴D(2,12),
∴DI=12,
∵S△ABD=ABDI=48,
∴AB=8;
∵OB=ABAO=82=6,
∴B(6,0);
(2)∵OC=OB=6,
∴∠OCB=∠CBO=45°,
∵MN=MB,
∴設∠MNB=∠MBN=α,
作NK⊥x軸垂足為K,MQ⊥AB垂足為Q,MP⊥NK,垂足為P;
∴∠NKB=∠MQK=∠MPK=90°,
∴四邊形MPKQ為矩形,
∴NK∥CO,MQ=PK;
∵∠KNB=90°45°=45°,
∴∠MNK=45°+α,∠MBQ=45°+α,
∴∠MNK=∠MBQ,
∵MN=MB,∠NPM=∠MQB=90°,
∴△MNP≌△MQB(AAS),
∴MP=MQ;
∵B(6,0),D(2,12),
∴設BD的解析式為y=kx+b(k≠0),
∴,解得:k=-3,b=18,
∴BD的解析式為y=3x+18,
∵點M的縱坐標為d,
∴MQ=MP=d,把y=d代入y=3x+18得d=3x+18,
解得x=,
∴OQ=;
∵N的橫坐標為t,
∴OK=t,
∴OQ=OK+KQ=t+d,
∴=t+d,
∴d=;
(3)作NW⊥AB垂足為W,
∴∠NWO=90°,
∵∠ACN=45°+∠ACO,∠ANC=45°+∠NAO,
∵∠ACO=∠NAO,
∴∠ACN=∠ANC,
∴AC=AN,
又∵∠ACO=∠NAO,∠AOC=∠NOW=90°,
∴△ANW≌△CAO(AAS),
∴AO=NW=2,
∴WB=NW=2,
∴OW=OBWB=62=4,
∴N(4,2);
延長NW到Y,使NW=WY,
∴△NFW≌△YFW(SAS)
∴NF=YF,∠NFW=∠YFW,
又∵∠HFN=2∠NFO,
∴∠HFN=∠YFN,
作NS⊥YF,
∵∠FH⊥NH,
∴∠H
∵FN=FN,
∴△FHN≌△FSN(AAS),
∴SF=FH=,NY=2+2=4,
設YS=a,FY=FN=a+,
在Rt△NYS和Rt△FNS中:NS2=NY2YS2;NS2=FN2FS2;NY2YS2=FN2FS2,
∴42a2=(a+)2-()2,
解得a=
∴FN=;
在Rt△NWF中WF=,
∴FO=OW+WF=4+6=10,
∴F(10,0),
∴AW=AO+OW=2+4=6,
∴AW=FW,
∵NW⊥AF,
∴NA=NF,
∴∠NFA=∠NAF,
∵∠ACO=∠NAO,
∴∠NFA=∠ACO,
設GF交y軸于點T,∠CTF=∠ACO+∠CGF=∠COF+∠GFO,
∴∠CGF=∠COF=90°,
設FN的解析式為y=px+q(p≠0),把F(10,0)N(4,2)代入y=px+q
得,解得,
∴,
∴聯(lián)立,解得:,
∴,
把G點代入y=mx+3,得,得m=,
∴y=x+3,
令y=0得0=x+3,x=4,
∴R(4,0),
∴AR=AO+OR=2+4=6,RF=OFOR=104=6,
∴AR=RF,
∵FE∥AC,
∴∠FEG=∠AGE,∠GAF=∠EFA,
∴△GRA≌△EFR(AAS),
∴EF=AG,
∴四邊形AGFE為平行四邊形,
∵∠AGF=180°∠CGF=180°90°=90°,
∴平行四邊形AGFE為矩形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖平面直角坐標系中,點,在軸上,,點在軸上方,,,線段交軸于點,,連接,平分,過點作交于.
(1)點的坐標為 .
(2)將沿線段向右平移得,當點與重合時停止運動,記與的重疊部分面積為,點為線段上一動點,當時,求的最小值;
(3)當移動到點與重合時,將繞點旋轉一周,旋轉過程中,直線分別與直線、直線交于點、點,作點關于直線的對稱點,連接、、.當為直角三角形時,直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O 是△ABC 的外接圓,BC 是直徑,AC=2DH,過點 D 作 DH 垂直BC 于點 H,以下結論中:①BH=HD;②∠BAO=∠BOD;③;④連接 AO、BD,若 BC=8,sin∠HDO= ,則四邊形 ABDO 的面積為, 其中正確的結論是 ____(請?zhí)顚懶蛱枺?/span>
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形是菱形,點分別在上,且,點分別在上,與相交于點.
(1)如圖1,求證:四邊形是菱形;
(2)如圖2,連接,在不添加任何輔助線的情況下,請直接寫出面積相等的四邊形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是正方形ABCD的對角線BD上一點,PE⊥BC于E,PF⊥CD于F,連接EF,給出下列三個結論:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP.其中正確結論的序號是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC與△CDE都是等邊三角形,點E、F分別在AC、BC上,且EF∥AB.
(1)求證:四邊形EFCD是菱形;
(2)設CD=2,求D、F兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)y=(x>0)的圖象交于點B(2,n),過點B作BC⊥x軸于點C,點P(3n﹣4,1)是該反比例函數(shù)圖象上的一點,且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com