【題目】在ABCD中,點E為AD的中點,連接BE,交AC于點F,則AF:CF=(

A.1:2
B.1:3
C.2:3
D.2:5

【答案】A
【解析】解:∵四邊形ABCD是平行四邊形,
∴△AEF∽△BCF,
=
∵點E為AD的中點,
= =
故選:A.
【考點精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分,以及對相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校積極開展“陽光體育”活動,共開設(shè)了跳繩、足球、籃球、跑步四種運動項目,為了解學(xué)生最喜愛哪一種項目,隨機抽取了部分學(xué)生進行調(diào)查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).

(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)該校共有1200名學(xué)生,請估計全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DEF均是邊長為4的等邊三角形,△DEF的頂點D為△ABC的一邊BC的中點,△DEF繞點D旋轉(zhuǎn),且邊DF,DE始終分別交△ABC的邊AB,AC于點H,G,圖中直線BC兩側(cè)的圖形關(guān)于直線BC成軸對稱.連結(jié)HH′,HG,GG′,H′G′,其中HH′、GG′分別交BC于點I,J.

(1)求證:△DHB∽△GDC;
(2)設(shè)CG=x,四邊形HH′G′G的面積為y,
①求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍.
②求當(dāng)x為何值時,y的值最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+mx+n.
(1)若該二次函數(shù)的圖象與x軸只有一個交點,請用含m的代數(shù)式表示n;
(2)若該二次函數(shù)的圖象與x軸交于A、B兩點,其中點A的坐標(biāo)為(﹣1,0),AB=4,請求出該二次函數(shù)的表達式及頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E,F分別是等邊△ABC中AC,AB邊上的中點,以AE為邊向外作等邊△ADE.

(1)求證:四邊形AFED是菱形;
(2)連接DC,若BC=10,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,方格紙中的每個小方格都是邊長為1的正方形,Rt△ABC的項點均在格點上.A(﹣6,1)B(﹣3,1)C(﹣3,3)

(1)將Rt△ABC沿x軸正方向平移5個單位長度后得到Rt△A1B1C1 . 試在圖中畫出Rt△A1B1C1 , 并寫出C1點的坐標(biāo);
(2)將Rt△ABC繞點B順時針旋轉(zhuǎn)90°后得到Rt△A2B2C2 . 試在圖中畫出Rt△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.

(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進甲、乙兩種服裝,每件甲種服裝比每件乙種服裝貴25元,該商場用2000元購進甲種服裝,用750元購進乙種服裝,所購進的甲種服裝的件數(shù)是所購進的乙種服裝的件數(shù)的2倍.
(1)分別求每件甲種服裝和每件乙種服裝的進價;
(2)若每件甲種服裝售價130元,將購進的兩種服裝全部售出后,使得所獲利潤不少于750元,問每件乙種服裝售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,延長BA與⊙A相交于點F.若 的長為 ,則圖中陰影部分的面積為

查看答案和解析>>

同步練習(xí)冊答案