【題目】如圖,點(diǎn)、分別是正方形的邊、上的點(diǎn),且、相交于點(diǎn),下列結(jié)論:①;②;③,其中一定正確的有( )

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

【答案】C

【解析】

根據(jù)正方形的性質(zhì),運(yùn)用SAS證明△ABF≌△DAE,運(yùn)用全等三角形性質(zhì)逐一解答.

∵四邊形ABCD是正方形,

AB=AD,∠BAF=ADE=90°.

CE=DF,∴AF=DE

∴△ABF≌△DAE

AE=BF;∠AFB=AED

∵∠AED+DAE=90°,

∴∠AFB+DAE=90°,

∴∠AOF=90°,

AEBF,故①正確;

AO=OE,則BO垂直平分AE

AB=BC=BE,這與BE>BC矛盾,故②不正確;

SAOB=SABF-SAOF,S四邊形DEOF=SADE-SAOF,

∵△ABF≌△DAE

SABF=SADE,

SAOB=S四邊形DEOF,故③正確.

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BDABC的角平分線,點(diǎn)E.F分別在邊AB.BC上,且EDBCEFAC,求證:

1BE等于CF

2)∠ABC=60゜,∠ADB=100゜,求∠AEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,BM是∠ABC的平分線,交CD于點(diǎn)M,且DM2,平行四邊形ABCD的周長(zhǎng)是14,則BC的長(zhǎng)等于( 。

A. 2B. 2.5C. 3D. 3.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列各組條件中,不能說(shuō)明的是(

A.AB=DE,∠B=E,∠C=FB.AB=DE,∠A=D,∠B=E

C.AC=DFBC=EF,∠A=DD.AB=DE,BC=EFAC=ED

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,點(diǎn)邊上的一動(dòng)點(diǎn),點(diǎn)上一點(diǎn),且,、相交于點(diǎn).

1)求證:

2)求的度數(shù)

3)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校園文學(xué)社為了解本校學(xué)生對(duì)本社一種報(bào)紙四個(gè)版面的喜歡情況,隨機(jī)抽取部分學(xué)生做了一次問(wèn)卷調(diào)查,要求學(xué)生選出自己喜歡的一個(gè)版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計(jì)圖如下:

各版面選擇人數(shù)的扇形統(tǒng)計(jì)圖

各版面選擇人數(shù)的條形統(tǒng)計(jì)圖

請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

1a=______%第四版對(duì)應(yīng)扇形的圓心角為 °;

2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該校有1200名學(xué)生,請(qǐng)你估計(jì)全校學(xué)生中最喜歡第三版的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ADBC,∠B=90°,對(duì)角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)EF.

1)求證:四邊形AFCE是菱形;

2)若AB=6,BC=8,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】蕪湖國(guó)際動(dòng)漫節(jié)期間,小明進(jìn)行了富有創(chuàng)意的形象設(shè)計(jì).如圖1,他在邊長(zhǎng)為1的正方形ABCD內(nèi)作等邊三角形BCE,并與正方形的對(duì)角線交于F、G點(diǎn),制成如圖2的圖標(biāo).則圖標(biāo)中陰影部分圖形AFEGD的面積=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案