【題目】如圖,已知,是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點.
求直線與軸的交點的坐標(biāo)及的面積;
在軸上是否存在一點,使得的值最大?若存在,直接寫出點的坐標(biāo);若不存在,請說明理由;
當(dāng)點在雙曲線上運動時,作以、為鄰邊的平行四邊形,求平行四邊形周長最小時點的坐標(biāo).
【答案】;存在, 或.
【解析】
(1)利用xy=m求出反比例函數(shù)解析式,進而利用待定系數(shù)法求一次函數(shù)解析式,再求出圖象與x軸交點坐標(biāo),進而得出三角形面積;
(2)作B點關(guān)于x軸對稱點B′,連接AB′,直線AB′與x軸交點即為P點,此時PBPA最大,進而利用待定系數(shù)法求一次函數(shù)解析式求出圖象與x軸交點坐標(biāo)即可;
(3)利用當(dāng)橫縱坐標(biāo)的絕對值相等時OQ長度最短,平行四邊形周長最小,進而求出即可.
∵,是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個交點,
∴,
∴反比例函數(shù),
∴,
解得:,
將,代入一次函數(shù),
得:,
解得:,
∴直線的解析式為:,
當(dāng)時,,
∴直線與軸的交點的坐標(biāo)為:,
∴;
存在,作點關(guān)于軸對稱點,連接,直線與軸交點即為點,此時最大.
∵,∴,
將,代入得:
,
解得:,
∴,
當(dāng)時,,
∴;
作以、為鄰邊的平行四邊形,當(dāng)橫縱坐標(biāo)的絕對值相等時長度最短,平行四邊形周長最小,
∴,
解得:,
∴或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過點(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設(shè)反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過點(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點的坐標(biāo).
【題型】解答題
【結(jié)束】
24
【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為美化環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為a米.
(1)用含a的式子表示花圃的面積;
(2)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,…都是等腰直角三角形,直角頂點,,…都在函數(shù)的圖象上,若三角形依次排列下去,則的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ OAB 是腰長為 1 的等腰直角三角形, OAB 90°,延長OA 至 B1 ,使 AB1 OA ,以OB1 為底,在△ OAB 外側(cè)作等腰直角三角形OA1B1 ,再延長OA1 至 B2 , 使 A1B2 OA1 ,以OB2 為底,在△ OA1B1 外側(cè)作等腰直角三角形OA2 B2 ,……,按此規(guī)律作等腰直角三角形OAn Bn ( n 1 , n 為正整數(shù)),回答下列問題:
(1) A3B3 的長是_____________;(2)△ OA2020 B2020 的面積是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=40°,則∠CDE的度數(shù)為( )
A.50°B.40°C.60°D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點在的邊上,交于,交于,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時代的到來,傳統(tǒng)的教學(xué)模式也在悄然發(fā)生著改變.某出國培訓(xùn)機構(gòu)緊跟潮流,對培訓(xùn)課程采取了線上線下同步銷售的策路,為了讓客戶更理性的選擇,該機構(gòu)推出了甲、乙兩個課程體驗包:甲課程體驗包價值660元含3節(jié)線上課程和2節(jié)線下課;乙課程體驗包價值990元含2節(jié)線上課程和5節(jié)線下課程.
(1)分別求出該機構(gòu)每節(jié)課的線上價格和線下價格;
(2)該機構(gòu)其中一個銷售團隊上個月的銷售業(yè)績?yōu)椋壕上課程成交900節(jié),線下課成交1000節(jié).為回饋客戶,本月該機構(gòu)針對線上、線下每節(jié)課程的價格均作出了調(diào)整:每節(jié)課線上價格比上個月的價格下調(diào)a%,線下價格比上個月的價格下調(diào)a%,到本月底統(tǒng)計發(fā)現(xiàn),該銷售團隊線上成交的課程數(shù)比上個月增加了a%,線下成交的課程數(shù)上升到1080節(jié),最終團隊的月銷售總額線上比線下少了54000元,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com