【題目】如圖,10個邊長為1的正方形如圖擺放在平面直角坐標系中,經(jīng)過原點的一條直線l將這10個正方形分成面積相等的兩部分,則該直線l的解析式為

【答案】y= x
【解析】解:設(shè)直線l和10個正方形的最上面交點為A,過A作AB⊥OB于B,B過A作AC⊥OC于C, ∵正方形的邊長為1,
∴OB=3,
∵經(jīng)過原點的一條直線l將這10個正方形分成面積相等的兩部分,
∴兩邊分別是5,
∴三角形ABO面積是7,
OBAB=7,
∴AB= ,
∴OC=AB=
由此可知直線l經(jīng)過( ,3),
設(shè)直線方程為y=kx(k≠0),
則3= k,解得k=
∴直線l解析式為y= x.
故答案為:y= x.

設(shè)直線l和八個正方形的最上面交點為A,過A作AB⊥OB于B,B過A作AC⊥OC于C,易知OB=3,利用三角形的面積公式和已知條件求出A的坐標即可得到該直線l的解析式.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,BO、CO是角平分線.

(1)∠ABC=50°,∠ACB=60°,求BOC的度數(shù),并說明理由.

(2)題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“A=70°”,求BOC的度數(shù).

(3)若A=n°,求BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知m,x,y滿足:(x-5)2+|m-2|=0,-3a2·by+1與a2b3是同類項,求整式(2x2-3xy+6y2)-m(3x2-xy+9y2)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E為正方形ABCD中AD邊上的一個動點,AB=16,以BE為邊畫正方形BEFG,邊EF與邊CD交于點H.

(1)當E為邊AD的中點時,求DH的長;
(2)當tan∠ABE= 時,連接CF,求CF的長;
(3)連接CE,求△CEF面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在以O(shè)為原點的平面直角坐標系中,點A的坐標為(0,2),點P(s,t)在拋物線y= x2+1上,點P到x軸的距離記為m,PA=n.

(1)若s=4,分別求出m、n的值,并比較m與n的大小關(guān)系;
(2)若點P是該拋物線上的一個動點,則(1)中m與n的大小關(guān)系是否仍成立?請說明理由;
(3)如圖2,過點P的直線y=kx(k≠0)與拋物線交于另一點Q連接PA、QA,是否存在k使得PA=2QA?若存在,請求出k的值;若不存在,請舉例說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC在平面直角坐標系中的位置如圖所示,

(1)先畫出ABC關(guān)于x軸對稱的圖形△A1B1C1,再畫出△A1B1C1關(guān)于y軸對稱的圖形△A2B2C2;

(2)直接寫出△A2B2C2各頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+6分別與x軸、y軸交于點E,F(xiàn),已知點E的坐標為(﹣8,0),點A的坐標為(﹣6,0).

(1)求k的值;

(2)若點P(x,y)是該直線上的一個動點,且在第二象限內(nèi)運動,試寫出OPA的面積S關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

(3)探究:當點P運動到什么位置時,OPA的面積為,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫圓O,使圓O過A、D兩點,且圓心O在邊AC上.(保留作圖痕跡,不寫作法)
(2)求證:BC與圓O相切;
(3)設(shè)圓O交AB于點E,若AE=2,CD=2BD.求線段BE的長和弧DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖鋼架中,焊上等長的13根鋼條來加固鋼架,若AP1=P1P2=P2P3=…=P13P14=P14A,則∠A的度數(shù)是

查看答案和解析>>

同步練習冊答案