【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC時
(1)若CE⊥BD于E,①∠ECD=___________0;②求證:BD=2EC;
(2)如圖,點P是射線BA上A點右邊一動點,以CP為斜邊作等腰直角△CPF,其中∠F=90°,點Q為∠FPC與∠PFC的角平分線的交點.當點P運動時,點Q是否一定在射線BD上?若在,請證明,若不在;請說明理由.
【答案】22.5.
【解析】(1)①先運用三角形內角和定理,得出∠ABD=∠ECD,再根據(jù)∠ABD=22.5°,得到∠ECD=22.5°;②延長CE交BA的延長線于點G,通過判定△ABD≌△ACG,得出BD=CG=2CE即可;
(2)連接CQ,過點Q作QM⊥BP于M,作QN⊥BC于N,在等腰直角△CPF中,求得∠QCP=∠QPC=22.5°,進而得出△PQC中,∠PQC=135°;在四邊形QNBM中,根據(jù)QM⊥BP,QN⊥BC,∠ABC=45°,得到∠MQN=135°,進而得到∠NQC=∠MQP,根據(jù)AAS判定△QPM≌△QCN,得出QM=QN,最后根據(jù)角平分線的性質定理的逆定理,得出點Q一定在射線BD上.
解:(1)①∵∠BAC=90°,CE⊥BD,∠ADB=∠CDE,
∴∠ABD=∠ECD,
又∵∠BAC=90°,AB=AC,BD平分∠ABC,
∴∠ABD=22.5°,
∴∠ECD=22.5°;
故答案為:22.5.
②如圖,延長CE交BA的延長線于點G,
∵BD平分∠ABC,CE⊥BD,
∴CE=GE,
在△ABD與△ACG中,
∠DBA=∠ACG,∠BAC=∠CAG,AB=AC,
∴△ABD≌△ACG(AAS),
∴BD=CG=2CE;
(2)點Q一定在射線BD上,
理由:如圖,連接CQ,過點Q作QM⊥BP于M,作QN⊥BC于N,
∵QF為∠PFC的角平分線,△CPF為等腰直角三角形,
∴QF為PC的垂直平分線,
∴PQ=QC,
∵Q為∠FPC與∠PFC的角平分線的交點,
∴CQ平分∠FCP,
∵△CPF為等腰直角三角形,
∴∠FCP=∠FPC=45°,
∴∠QCP=∠QPC=22.5°,
∴△PQC中,∠PQC=135°,
∵在四邊形QNBM中,QM⊥BP,QN⊥BC,∠ABC=45°,
∴∠MQN=135°,
∴∠MQN=∠PQC,
∴∠NQC=∠MQP,
又∵QC=QP,QM⊥BP,QN⊥BC,
∴△QPM≌△QCN(AAS),
∴QM=QN,
又∵QM⊥BP,QN⊥BC,
∴點Q一定在射線BD上.
科目:初中數(shù)學 來源: 題型:
【題目】((2016四川省攀枝花市)如圖,在平面直角坐標系中,直角△ABC的三個頂點分別是A(﹣3,1),B(0,3),C(0,1)
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C1;
(2)分別連結AB1、BA1后,求四邊形AB1A1B的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個射手連續(xù)射靶22次,其中3次射中10環(huán),7次射中9環(huán),9次射中8環(huán),3次射中7環(huán).則射中環(huán)數(shù)的中位數(shù)和眾數(shù)分別為( )
A.8.5,9B.8.5,8C.8,8D.8,9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點E,連接AC交DE于點F,點G為AF的中點,∠ACD=2∠ACB.若DG=3,EC=1,則DE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若+800元表示盈利800元,那么﹣300元表示( )
A. 收入300元 B. 盈利300元 C. 虧損300元 D. 支出300元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,是確定事件的是( 。
A.三角形任意兩邊之和小于第三邊
B.365人中一定至少有兩人的生日相同
C.龍口市下周一定會下雨
D.打開電視機,正在播放廣告
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標和四邊形ABPC的最大面積.
(3)直線l經過A、C兩點,點Q在拋物線位于y軸左側的部分上運動,直線m經過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com