【題目】如圖,在矩形中,,,為對角線上一點,且,過作,分別交、于、。動點從點出發(fā),以每秒1個單位長的速度在射線上運動。動點從點出發(fā),以每秒1個單位長的速度在線段上沿方向運動。以為邊作等邊。已知、兩點同時出發(fā),當點返回點時兩點同時停止運動。運動時間為秒.
(1)求線段,當點落在線段上時等于多少;
(2)設(shè)運動過程中與矩形的重疊部分面積為,請直接寫出與的函數(shù)關(guān)系式及自變量的取值范圍;
(3)將四邊形繞點旋轉(zhuǎn)一周,在此過程中,設(shè)直線分別與直線、交于點、,當是以為底角的等腰三角形時,求的長.
【答案】(1)線段BF=4,當點落在線段上時t=3;(2)見解析;(3)或,或.
【解析】
(1)根據(jù)矩形的性質(zhì),結(jié)合已知條件通過解直角三角形即可求解;
(2)分為四種情況,畫出圖形,求出各個三角形的面積,根據(jù)圖形即可得出答案;
(3)先根據(jù)解直角三角形,求得BF的長,再根據(jù)旋轉(zhuǎn)求得的長,最后根據(jù)四邊形BCGF旋轉(zhuǎn)后的兩種不同位置進行討論,求得DN的長.
(1)∵矩形ABCD中,AB=9,AD=,
∴∠ABD=30,BD=,
∵DE=2BE,F(xiàn)G⊥BD,
∴DE=4,BE=2
∴;
∴當點R落在線段CD時,ΔPQR的高為,則底為6,所以t=3.
(2)四種情況如圖所示圖1,圖2,圖3,圖4
圖1所示,當時,,
圖2所示,當時,,
圖3 所示,當時,
圖4所示,當時, ;
(3)由(1)得BF=4,由旋轉(zhuǎn)可得BF'=BF=4,∠F'BC'=∠FBC=90°,∠BFG=∠BF'G'=60°,①如圖5,當△DMN是以∠MDN,∠MND為底角的等腰三角形時,∠N=30°,
∴tan∠BNF'=,
∴,即BN=4,
∴DN=BD+BN=6+4=10;
②如圖6,當△DMN是以∠MDN.∠NMD為底角的等腰三角形時,∠BNM=60°=∠BF'M,此時,F'與N重合,故BF'=BN=4,
∴DN=BD﹣BN=6﹣4.
故答案為:10或6﹣4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,點P為直徑BA延長線上一點,PD切⊙O于點D、過點B作BH⊥PH,點H為垂足,BH交⊙O于點C,連接BD,CD.
(1)求證:BD平分∠ABH;
(2)若CD=2,∠ABD=30°,求⊙O的直徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過點(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設(shè)反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過點(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點的坐標.
【題型】解答題
【結(jié)束】
24
【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種飲料,平均每天可售出100箱,每箱利潤為120元,為了擴大銷量,盡快減少庫存,超市準備適當降價,據(jù)測算,若每箱降價2元,則每天可多售出4箱.
(1)如果要使每天銷售該飲料獲利14000元,則每箱應(yīng)降價多少元.
(2)每天銷售該飲料獲利能達到14500元嗎?若能,則每箱應(yīng)降價多少?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線交于點O,以AD為邊向外作Rt△ADE,∠AED=90°,連接OE,DE=6,OE=8,則另一直角邊AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正面分別寫著數(shù)字1,2,3的三張卡片(注:這三張卡片的形狀、大小、質(zhì)地,顏色等其他方面完全相同,若背面上放在桌面上,這三張卡片看上去無任何差別)洗勻后,背面向上放在桌面上,從中先隨機抽取一張卡片,記該卡片上的數(shù)字為x,再把剩下的兩張卡片洗勻后,背面向上放在桌面上,再從這兩張卡片中隨機抽取一張卡片,記該卡片上的數(shù)字為y.
(1)用列表法或樹狀圖法(樹狀圖也稱樹形圖)中的一種方法,寫出(x,y)所有可能出現(xiàn)的結(jié)果.
(2)求取出的兩張卡片上的數(shù)字之和為偶數(shù)的概率P.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,對角線、相交于點,將直線繞點順時針旋轉(zhuǎn)一個角度(),分別交線段、于點、,已知,,連接.
(1)如圖①,在旋轉(zhuǎn)的過程中,請寫出線段與的數(shù)量關(guān)系,并證明;
(2)如圖②,當時,請寫出線段與的數(shù)量關(guān)系,并證明;
(3)如圖③,當時,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生會準備調(diào)查六年級學(xué)生參加“武術(shù)類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數(shù).
(1)確定調(diào)查方式時,甲同學(xué)說:“我到六年級(1)班去調(diào)查全體同學(xué)”;乙同學(xué)說:“放學(xué)時我到校門口隨機調(diào)查部分同學(xué)”;丙同學(xué)說:“我到六年級每個班隨機調(diào)查一定數(shù)量的同學(xué)”.請指出哪位同學(xué)的調(diào)查方式最合理.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
武術(shù)類 | 0.25 | |
書畫類 | 20 | 0.20 |
棋牌類 | 15 | b |
器樂類 | ||
合計 | a | 1.00 |
(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計表和扇形統(tǒng)計圖.
請你根據(jù)以上圖表提供的信息解答下列問題:
①a=_____,b=_____;
②在扇形統(tǒng)計圖中,器樂類所對應(yīng)扇形的圓心角的度數(shù)是_____;
③若該校六年級有學(xué)生560人,請你估計大約有多少學(xué)生參加武術(shù)類校本課程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com