【題目】如圖,ABC中,ABAC5,BC6ADBC邊上的中線且AD4,FAD上的動點,EAC邊上的動點,則CF+EF的最小值為_____

【答案】

【解析】

BMACM,交ADF,根據(jù)三線合一定理求出BD的長和ADBC,根據(jù)三角形面積公式求出BM,根據(jù)對稱性質(zhì)求出BFCF,根據(jù)垂線段最短得出CF+EFBM,即可得出答案.

解:作BMACM,交ADF,

ABAC5,BC6,ADBC邊上的中線,

BDDC3,ADBC,AD平分∠BAC

B、C關于AD對稱,

BFCF

根據(jù)垂線段最短得出:CF+EFBF+EFBF+FMBM,

CF+EFBM,

SABC×BC×AD×AC×BM,

BM,

CF+EF的最小值是

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動點(不與A,B重合),過M點作MN∥BC交AC于點N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令AM=x.

(1)用含x的代數(shù)式表示△MNP的面積S;

(2)當x為何值時,⊙O與直線BC相切?

(3)在動點M的運動過程中,記△MNP與梯形BCNM重合的面積為y,試求y關于x的函數(shù)表達式,并求x為何值時,y的值最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形紙片ABC中,∠A=65°,∠B=75°,將∠C沿DE對折,使點C落在ΔABC外的點處,若∠1=20°,則∠2的度數(shù)為( )

A. 80°B. 90°

C. 100°D. 110°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為6cm的正方形ABCD折疊,使點D落在AB邊的中點E處,折痕為FH,點C落在Q處,EQBC交于點G,則△EBG的周長是 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)學興趣小組想測量電線桿AB的高度,他們發(fā)現(xiàn)電線桿的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD與地面成30°角,且此時測得高1 m的標桿的影長為2 m,則電線桿的高度為________m(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBCDCEC,AC=BC,DC=EC,圖中AE、BD有怎樣的關系(數(shù)量關系和位置關系)?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB20cm,點P從點A出發(fā),沿AB2cm/s的速度勻速向終點B運動;同時點Q從點B出發(fā),沿BA4cm/s的速度勻速向終點A運動,設運動時間為ts

1)填空:PA   cm;BQ   cm;(用含t的代數(shù)式表示)

2)當P、Q兩點相遇時,求t的值;

3)探究:當PQ兩點相距5cm時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】你會對多項式(x2+5x+2)(x2+5x+3)12分解因式嗎?對結構較復雜的多項式,若把其中某些部分看成一個整體,用新字母代替(即換元),能使復雜的問題簡單化、明朗化.從換元的個數(shù)看,有一元代換、二元代換等.

對于(x2+5x+2)(x2+5x+3)12

解法一:設x2+5xy,

則原式=(y+2)(y+3)12y2+5y6(y+6)(y1)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

解法二:設x2+5x+2y,

則原式=y(y+1)12y2+y12(y+4)(y3)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

解法三:設x2+2m,5xn,

則原式=(m+n)(m+n+1)12(m+n)2+(m+n)12(m+n+4)(m+n3)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

按照上面介紹的方法對下列多項式分解因式:

(1)(x2+x4)(x2+x+3)+10

(2)(x+1)(x+2)(x+3)(x+6)+x2;

(3)(x+y2xy)(x+y2)+(xy1)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類推,則a2018的值為(  )

A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018

查看答案和解析>>

同步練習冊答案