【題目】如圖,BC是直線AE外兩點,且∠1=∠2,要得到△ABE≌△ACE,需要添加的條件有①AB=AC;②BE=CE;③∠B=∠C;④∠AEB=∠AEC;⑤∠BAE=∠CAE.其中正確的( 。
A.①②③B.②③④C.②③⑤D.①④⑤
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數y=(k>0)的圖象經過點A(1,2)、B兩點,過點A作x軸的垂線,垂足為C,連接AB、BC.若三角形ABC的面積為3,則點B的坐標為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAD=∠BAD,DE⊥AB于E,點F在邊AC上,連接DF.
(1)求證:AC=AE;
(2)若CF=BE,直接寫出線段AB,AF,EB的數量關系: .
(3)若AC=8,AB=10,且△ABC的面積等于24,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于非零實數a、b,規(guī)定ab=,若(x﹣3)(3﹣2x)=0,則x的值為_____;若關于x的方程(x﹣3)(3﹣2x)﹣(3﹣x)(mx﹣2)=﹣1無解,則m的值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】給出定義,若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.
(1)在你學過的特殊四邊形中,寫出兩種勾股四邊形的名稱;
(2)如圖,將△ABC繞頂點B按順時針方向旋轉60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°.
①求證:△BCE是等邊三角形;
②求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,中,,現有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為每秒1個單位長度,點N的運度為每秒2個單位長度當點M第一次到達B點時,M、N同時停止運動.
點M、N運動幾秒后,M、N兩點重合?
點M、N運動幾秒后,可得到等邊三角形?
當點M、N在BC邊上運動時,能否得到以MN為底邊的等腰?如存在,請求出此時M、N運動的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面直角坐標系中的點,若點的坐標為(其中為常數,且)則稱點為點的“系雅培點”;
例如:的“3系雅培點”為,即.
(1)點的“2系雅培點”的坐標為 ;
(2)若點在軸的正半軸上,點的“系雅培點”為點,若在△中,,求的值;
(3)已知點在第四象限,且滿足;點是點的“系雅培點”,若分式方程無解,求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com