【題目】如圖,直線y=2x+3與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B,過點(diǎn)B作BC⊥x軸于點(diǎn)C,且C點(diǎn)的坐標(biāo)為(1,0).

(1)求反比例函數(shù)的解析式;

(2)點(diǎn)D(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PB+PD最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)y=;(2)P(,0).

【解析】

試題分析: (1)把x=1代入y=2x+3中,可求得B點(diǎn)坐標(biāo)為(1,5),再帶到反比例函數(shù)解析式中可求得反比例函數(shù)解析式;(2)作D關(guān)于x軸的對(duì)稱點(diǎn)D,連接BD,與x軸交點(diǎn)即為點(diǎn)P.

試題解析:(1)BCx軸于點(diǎn)C,且C點(diǎn)的坐標(biāo)為(1,0),把x=1代入y=2x+3中,y=2+3=5,點(diǎn)B的坐標(biāo)為(1,5),又點(diǎn)B(1,5)在反比例函數(shù)y=上,k=1×5=5,反比例函數(shù)的解析式為:y=;

(2)將點(diǎn)D(a,1)代入y=,得:a=5,點(diǎn)D坐標(biāo)為(5,1),則點(diǎn)D(5,1)關(guān)于x軸的對(duì)稱點(diǎn)為D(5,1),設(shè)過B(1,5)、D(5,1)的直線解析式為:y=kx+b,可得,解得

直線BD的解析式為:y=x+,直線BD與x軸的交點(diǎn)即為所求點(diǎn)P,當(dāng)y=0時(shí),得:x+ =0,解得:x=,故點(diǎn)P的坐標(biāo)為(,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值.2(x﹣3)(x+2)﹣(3+a)(﹣a+3),其中,a=﹣2,x=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,AB//CD,AE平分MABCD于點(diǎn)F,NFCD,垂足為點(diǎn)F

(1)求證:CAF=EFD

(2)若MCD=80,求NFE的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格內(nèi)有一直角坐標(biāo)系,其中,A點(diǎn)為(-3,0),B點(diǎn)為(-1,2)

(1)C點(diǎn)的坐標(biāo)為

(2)依次連接ABC得到三角形,將三角形ABC先向右移動(dòng)3個(gè)單位再向下移動(dòng)2個(gè)單位,得到三角形A'B'C',請(qǐng)?jiān)趫D中作出平移后的圖形,并寫出三個(gè)頂點(diǎn)A'、B' C' 的坐標(biāo);

(3)連接C'C、B'B,直接寫出四邊形CC' B'B的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,AC、BD交于點(diǎn)E,且∠ACD=∠ADC.

(1)如圖1,若AB=AD,求證:∠BAC=2∠BDC;

(2)如圖2,在(1)的條件下,若∠BDC=30°,求證:BC=AC.

(3)如圖3,若BC=AD,∠BDC=30°,過A作AE⊥BD于E,過C作CF⊥BD于F, 且EF:BE=2:11,DF=9,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)閱讀:我們知道, 于是要解不等式,我們可以分兩種情況去掉絕對(duì)值符號(hào),轉(zhuǎn)化為我們熟悉的不等式,按上述思路,我們有以下解法:

解:(1)當(dāng),即時(shí):

解這個(gè)不等式,得:

由條件,有:

(2)當(dāng)< 0,即 x < 3時(shí),

解這個(gè)不等式,得:

由條件x < 3,有: < 3

∴ 如圖, 綜合(1)、(2)原不等式的解為:

根據(jù)以上思想,請(qǐng)?zhí)骄客瓿上铝?個(gè)小題:

(1); (2)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競賽,為獎(jiǎng)勵(lì)在競賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.

(1)求足球和籃球的單價(jià)各是多少元?

(2)根據(jù)學(xué)校實(shí)際情況,需一次性購買足球和籃球共20個(gè),但要求購買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購買多少個(gè)足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過關(guān)游戲規(guī)定:在過第n關(guān)時(shí)要將一顆質(zhì)地均勻的骰子(六個(gè)面上分別刻有1到6的點(diǎn)數(shù))拋擲n次,若n次拋擲所出現(xiàn)的點(diǎn)數(shù)之和大于n2,則算過關(guān);否則不算過關(guān),則能過第二關(guān)的概率是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算與化簡:

(1)(﹣5)﹣(+3)﹣(﹣7)+(﹣9)

(2)(﹣3)3÷2×(﹣2

(3)(﹣+)÷(﹣

(4)8﹣23÷(﹣4)×|2﹣(﹣3)2|

(5)化簡:4(3x2y﹣xy2)﹣6(﹣xy2+3x2y)

(6)化簡求值:2(2a2+ab﹣1)﹣2(﹣3a2+ab+1),其中a=﹣4,b=

查看答案和解析>>

同步練習(xí)冊(cè)答案