【題目】如圖,已知AB是⊙O的直徑,AC,BC是⊙O的弦,OEACBCE,過(guò)點(diǎn)B作⊙O的切線交OE的延長(zhǎng)線于點(diǎn)D,連接DC并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)F

1)求證:DC是⊙O的切線;

2)若∠ABC30°,AB8,求線段CF的長(zhǎng).

【答案】(1)證明見解析;(2)CF4

【解析】

1)連接OC,根據(jù)平行線的性質(zhì)得到∠1=∠ACB,由圓周角定理得到∠1=∠ACB90°,根據(jù)線段垂直平分線的性質(zhì)得到DBDC,求得∠DBE=∠DCE,根據(jù)切線的性質(zhì)得到∠DBO90°,求得OCDC,于是得到結(jié)論;(2)證明△AOC是等邊三角形,解RtCOF即可得到結(jié)論;

解:

1)證明:如圖,連接OC,

,

OEAC,

∴∠1=∠ACB,

AB是⊙O的直徑,

∴∠1=∠ACB90°,

ODBC,由垂徑定理得OD垂直平分BC,

DBDC,

∴∠DBE=∠DCE,

又∵OCOB

∴∠OBE=∠OCE,

即∠DBO=∠OCD

DB為⊙O的切線,OB是半徑,

∴∠DBO90°,

∴∠OCD=∠DBO90°,

OCDC,

OC是⊙O的半徑,

DC是⊙O的切線;

2)解:在RtABC中,∠ABC30°,

∴∠360°,又OAOC,

∴△AOC是等邊三角形,

∴∠COF60°,

RtCOF中,tanCOF,

CF;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣4,n),B2,﹣4)是一次函數(shù)ykx+b和反比例函數(shù)y的圖象的兩個(gè)交點(diǎn).

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)觀察圖象,直接寫出方程kx+b0的解;

3)求△AOB的面積;

4)觀察圖象,直接寫出不等式kx+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A,B兩點(diǎn)的坐標(biāo)分別為(2,0),(0,2),⊙C的圓心坐標(biāo)為(-10),半徑為1.D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DAy軸交于點(diǎn)E ,則ABE面積的最小值是 _____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分8分在一個(gè)不透明的袋中裝有3 個(gè)完全相同的小球,上面分別標(biāo)號(hào)為1、2、3,從中隨機(jī)摸出兩個(gè)小球,并用球上的數(shù)字組成一個(gè)兩位數(shù).

1求組成的兩位數(shù)是奇數(shù)的概率;

2小明和小華做游戲,規(guī)則是:若組成的兩位數(shù)是4的倍數(shù),小明得3分,否則小華得3分,你認(rèn)為該游戲公平嗎?說(shuō)明理由;若不公平,請(qǐng)修改游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè)分式能化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式,則稱這個(gè)分式為和諧分式.如: ,則和諧分式

(1)下列分式中,屬于和諧分式的是_____(填序號(hào));

;②;③;④;

(2)和諧分式化成一個(gè)整式與一個(gè)分子為常數(shù)的分式的和的形式為:_______(要寫出變形過(guò)程);

(3)應(yīng)用:先化簡(jiǎn),并求x取什么整數(shù)時(shí),該式的值為整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為的正方形的對(duì)角線交于點(diǎn),將正方形沿直線折疊,點(diǎn)落在對(duì)角線上的點(diǎn)處,折痕于點(diǎn),則

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形ABOC′.

(1)若拋物線經(jīng)過(guò)點(diǎn)C、A、A,求此拋物線的解析式;

(2)點(diǎn)M時(shí)第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問(wèn):當(dāng)點(diǎn)M在何處時(shí),AMA的面積最大?最大面積是多少?并求出此時(shí)M的坐標(biāo);

(3)若P為拋物線上一動(dòng)點(diǎn),Nx軸上的一動(dòng)點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、NB、Q構(gòu)成平行四邊形時(shí),求點(diǎn)P的坐標(biāo),當(dāng)這個(gè)平行四邊形為矩形時(shí),求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中以AB為直徑作⊙O,分別交邊AC、BCD、E,過(guò)DDFBCF,且D為弧AE的中點(diǎn).

1)求證:DF為⊙O的切線;

2)若AD=時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B,C,點(diǎn)C坐標(biāo)為(80),連接ABAC

1)請(qǐng)直接寫出二次函數(shù)的解析式.

2)判斷ABC的形狀,并說(shuō)明理由.

3)若點(diǎn)Nx軸上運(yùn)動(dòng),當(dāng)以點(diǎn)AN,C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)寫出此時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案