【題目】如圖,二次函數(shù)x軸交于點(diǎn)B和點(diǎn)A-1,0),與y軸交于點(diǎn)C,與一次函數(shù)交于點(diǎn)A和點(diǎn)D.

1.求出的值;

2.若直線(xiàn)AD上方的拋物線(xiàn)存在點(diǎn)E,可使得△EAD面積最大,求點(diǎn)E的坐標(biāo);

3.點(diǎn)F為線(xiàn)段AD上的一個(gè)動(dòng)點(diǎn),點(diǎn)F到(2)中的點(diǎn)E的距離與到y軸的距離之和記為d,求d的最小值及此時(shí)點(diǎn)F的坐標(biāo).

【答案】1a=1b=3;c=4. 2)當(dāng)m=1時(shí),最大值為6,此時(shí)點(diǎn)E的坐標(biāo)為(1,6)(3d的最小值為5,F點(diǎn)的坐標(biāo)為(12.

【解析】

(1)根據(jù)圖形可以看出點(diǎn)C的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(4,0),代入二次函數(shù)的解析式中,即可得出b、c的值,將點(diǎn)A(-1,0)代入一次函數(shù)中,即可求得a的值;
(2)設(shè)點(diǎn)E的橫坐標(biāo)為m,則可得出點(diǎn)E的縱坐標(biāo)為-m2+3m+4.過(guò)點(diǎn)Ex軸的垂線(xiàn)l,交x軸于點(diǎn)G,交AD于點(diǎn)H,則點(diǎn)H的坐標(biāo)為(m,m+1).過(guò)點(diǎn)Dl的垂線(xiàn),垂足為T;聯(lián)立直線(xiàn)方程和二次函數(shù)方程,即可得出D的坐標(biāo),再根據(jù)SAED=SAEH+SHED,得出含m的函數(shù),利用a的取值范圍,可知,當(dāng)m=1時(shí),即可得出最大值,從而可得出E的坐標(biāo);
(3)過(guò)Ay軸的平行線(xiàn)AS,過(guò)FFG⊥y軸交AS于點(diǎn)M,過(guò)FFN⊥x軸于N,結(jié)合已知,可得出FM=FN,即有d=FE+FM-1=FE+FN-1,可知當(dāng)N、F、E所在直線(xiàn)與x軸垂直時(shí),d=FE+FN-1最小,即可得出F的坐標(biāo).

(1)∵點(diǎn)C(0,4),B(4,0)在函數(shù)的圖象上,

解得:b=3,c=4,

∵點(diǎn)A(-1,0)在一次一次函數(shù)y=x+a上,

0=-1+a,

a=1.

所以a=1,b=3,c=4.

2)設(shè)點(diǎn)E的橫坐標(biāo)為m,則點(diǎn)E的縱坐標(biāo)為.過(guò)點(diǎn)Ex軸的垂線(xiàn)l,交x軸于點(diǎn)G,交AD于點(diǎn)H,則點(diǎn)H的坐標(biāo)為.過(guò)點(diǎn)Dl的垂線(xiàn),垂足為T.

聯(lián)立組成方程組,解得點(diǎn)D的坐標(biāo)為(3,4).

所以

a=<0,

有最大值.當(dāng)m=1時(shí),最大值為6,此時(shí)點(diǎn)E的坐標(biāo)為(1,6)

3)過(guò)Ay軸的平行線(xiàn)AS,過(guò)FFGy軸交AS于點(diǎn)M,過(guò)FFNx軸于N,如圖所示:

∵點(diǎn)D的坐標(biāo)為(3,4),點(diǎn)A坐標(biāo)為(-1,0)

∴∠DAB=45°

AD平分∠SAB,

FM="FN"

d =FE+FM-1=FE+FN-1

顯然,當(dāng)N、F、E所在直線(xiàn)與x軸垂直時(shí),d=FE+FN-1最小,最小值為6-1=5.

此時(shí)點(diǎn)F的橫坐標(biāo)為1,代入F點(diǎn)的坐標(biāo)為(1,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,∠ABC=90°,BA=BC.將線(xiàn)段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段ADE是邊BC上的一動(dòng)點(diǎn),連結(jié)DEAC于點(diǎn)F,連結(jié)BF.

(1)求證:FB=FD

(2)如圖2,連結(jié)CD,點(diǎn)H在線(xiàn)段BE上(不含端點(diǎn)),且BH=CE,連結(jié)AHBF于點(diǎn)N.

①判斷AHBF的位置關(guān)系,并證明你的結(jié)論;

②連接CN.若AB=2,請(qǐng)直接寫(xiě)出線(xiàn)段CN長(zhǎng)度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖像與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C.

1)求A、B、C點(diǎn)的坐標(biāo);

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD中,AE⊥BC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn),得到△BA′E′,連接DA′.若∠ADC=60°,∠ADA′=50°,則∠DA′E′的大小為( )

A. 130° B. 150° C. 160° D. 170°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)經(jīng)過(guò)A(3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對(duì)稱(chēng)軸是直線(xiàn)l,l與x軸交于點(diǎn)H.

(1)求該拋物線(xiàn)的解析式;

(2)若點(diǎn)P是該拋物線(xiàn)對(duì)稱(chēng)軸l上的一個(gè)動(dòng)點(diǎn),求PBC周長(zhǎng)的最小值;

(3)如圖(2),若E是線(xiàn)段AD上的一個(gè)動(dòng)點(diǎn)( E與A、D不重合),過(guò)E點(diǎn)作平行于y軸的直線(xiàn)交拋物線(xiàn)于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,ADF的面積為S.

求S與m的函數(shù)關(guān)系式;

S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo); 若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在△ABC,ABAC,AB為直徑的⊙OAC邊于點(diǎn)D,過(guò)點(diǎn)CCFAB,與過(guò)點(diǎn)B的切線(xiàn)交于點(diǎn)F,連接BD.

(1)求證:BDBF

(2)AB10,CD4,BC的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD,EF分別是邊AB,CD的中點(diǎn),MN分別是邊AD,AB上兩點(diǎn),將△AMN沿MN對(duì)折,使點(diǎn)A落在點(diǎn)E上.若ABa,BCb,且NFB的中點(diǎn),則的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為( 。

A. (﹣ B. (﹣ C. (﹣ D. (﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱(chēng)為整點(diǎn).已知一組正方形的四個(gè)頂點(diǎn)恰好落在兩坐標(biāo)軸上,請(qǐng)你觀察每個(gè)正方形四條邊上的整點(diǎn)的個(gè)數(shù)的變化規(guī)律.回答下列問(wèn)題:

(1)經(jīng)過(guò)x軸上點(diǎn)(5,0)的正方形的四條邊上的整點(diǎn)個(gè)數(shù)是________;

(2)經(jīng)過(guò)x軸上點(diǎn)(n0)(n為正整數(shù))的正方形的四條邊上的整點(diǎn)個(gè)數(shù)為_____________

查看答案和解析>>

同步練習(xí)冊(cè)答案