【題目】如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是拋物線上兩點,則y1=y2;④4a+2b+c<0,其中說法正確的( 。
A.①②B.①②③C.①②④D.②③④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】只有1和它本身兩個因數(shù)且大于1的正整數(shù)叫做素數(shù).我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想是:每個大于2的偶數(shù)都可以表示為兩個素數(shù)的和,如16=3+ 13.
(1)若從7, 11, 19, 23中隨機抽取1個素數(shù),則抽到的素數(shù)是7的概率是_______;
(2)若從7, 11, 19, 23中隨機抽取1個素數(shù),再從余下的3個數(shù)字中隨機抽取1個素數(shù),用面樹狀圖或列表的方法求抽到的兩個素數(shù)之和大于等于30的概率,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線上部分點的橫坐標,縱坐標的對應(yīng)值如下表:
-3 | -2 | -1 | 0 | 1 | |||
0 | 4 | 3 | 0 |
(1)把表格填寫完整;
(2)根據(jù)上表填空:
①拋物線與軸的交點坐標是________和__________;
②在對稱軸右側(cè),隨增大而_______________;
③當時,則的取值范圍是_________________;
(3)請直接寫出拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊銳角三角形材料,高線AH長8 cm,底邊BC長10 cm,要把它加工成一個矩形零件,使矩形DEFG的一邊EF在BC上,其余兩個頂點D,G分別在AB,AC上,則四邊形DEFG的最大面積為( )
A. 40 cm2 B. 20 cm2
C. 25 cm2 D. 10 cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(3,0),C(0,3),點M是拋物線的頂點.
(1)求二次函數(shù)的關(guān)系式;
(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,
①求S與m的函數(shù)關(guān)系式,寫出自變量m的取值范圍.
②當S取得最值時,求點P的坐標;
(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)準備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形花園ABCD(圍墻MN最長可利用25m),現(xiàn)在已備足可以砌50m長的墻的材料,試設(shè)計一種砌法,使矩形花園的面積為300m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象的頂點坐標為,直線與該二次函數(shù)的圖象交于,兩點,其中點的坐標為,點在軸上.是軸上的一個動點,過點作軸的垂線分別與直線和二次函數(shù)的圖象交于,兩點.
(1)求的值及這個二次函數(shù)的解析式;
(2)若點的橫坐標,求的面積;
(3)當時,求線段的最大值;
(4)若直線與二次函數(shù)圖象的對稱軸交點為,問是否存在點,使以,,,為頂點的四邊形是平行四邊形?若存在,請求出此時點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是拋物線y=﹣x2+x+2在第一象限上的點,過點P分別向x軸和y軸引垂線,垂足分別為A,B,則四邊形OAPB周長的最大值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com