【題目】①計算:(-1)2+ - -︱-5︱
②用適當?shù)姆椒ń夥匠蹋簒2=2x+35.
【答案】【解答】解:①原式=1+2-(-2)-5,
=0.
②∵x2=2x+35,
∴x2-2x-35=0,
∴(x-7)(x+5)=0,
∴x1=7,x2=-5,
∴原方程的根為:x1=7,x2=-5.
【解析】①根據(jù)有理數(shù)的乘方,二次根式,立方根,絕對值的性質(zhì)即可得出答案.
②用十字相乘法因式分解即可求出原方程的根.
【考點精析】關(guān)于本題考查的因式分解法和絕對值,需要了解已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢;正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動點P從點C出發(fā),沿CA方向運動,速度是2cm/s,動點Q從點B出發(fā),沿BC方向運動,速度是1cm/s.
(1)幾秒后P、Q兩點相距25cm?
(2)幾秒后△PCQ與△ABC相似?
(3)設(shè)△CPQ的面積為S1 , △ABC的面積為S2 , 在運動過程中是否存在某一時刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,點P沿線段AB從點A向點B運動,設(shè)AP=x,
(1)求AD的長;
(2)點P在運動過程中,是否存在以A、P、D為頂點的三角形與以P、C、B為頂點的三角形相似?若存在,求出x的值;若不存在,請說明理由;
(3)直接寫出:當△CDP為等腰三角形時x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是由一副三角板拼成的圖案,其中,,,.
(1)求圖1中的度數(shù);
(2)若將圖1中的三角板不動,將另一三角板繞點順時針或逆時針旋轉(zhuǎn)度().當時,求的度數(shù)(圖2,圖3,圖4僅供參考).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知E、F分別為正方形ABCD的邊BC、CD上的點,且∠EAF=45°.
(1)如圖①求證:BE+DF=EF;
(2)連接BD分別交AE、AF于M、N,
①如圖②,若AB=6,BM=3,求MN.
②如圖③,若EF∥BD,求證:MN=CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若a、b、c是正數(shù),下列各式,從左到右的變形不能用如圖驗證的是( 。
A. (b+c)2=b2+2bc+c2
B. a(b+c)=ab+ac
C. (a+b+c)2=a2+b2+c2+2ab+2bc+2ac
D. a2+2ab=a(a+2b)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AC,點D為AC的中點,B是直線AC上的一點,且 BC=AB,BD=1cm,則線段AC的長為( )
A. B. C. 或D. 或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2-2ax+a+4(a<0)經(jīng)過點B.
(1)求該拋物線的函數(shù)表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設(shè)點M的橫坐標為m,△ABM的面積為S,求S與m的函數(shù)表達式,并求出S的最大值;
(3)在(2)的條件下,當S取得最大值時,動點M相應(yīng)的位置記為點M′.
①寫出點M′的坐標;
②將直線l繞點A按順時針方向旋轉(zhuǎn)得到直線l′,當直線l′與直線AM′重合時停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點C,設(shè)⊙B, ⊙M′都與直線l′相切,半徑分別為R1、R2 , 當R1+R2最大時,求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com