【題目】如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點(diǎn),點(diǎn)N是AB邊上一動(dòng)點(diǎn),將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是

【答案】2 ﹣2
【解析】解:如圖所示:
∵M(jìn)A′是定值,A′C長度取最小值時(shí),即A′在MC上時(shí),
過點(diǎn)M作MF⊥DC于點(diǎn)F,
∵在邊長為4的菱形ABCD中,∠A=60°,M為AD中點(diǎn),
∴MD=2,∠FDM=60°,
∴∠FMD=30°,
∴FD= MD=1,
∴FM=DM×cos30°= ,
∴MC= =2 ,
∴A′C=MC﹣MA′=2 ﹣2.
故答案為:2 ﹣2.
根據(jù)題意,在N的運(yùn)動(dòng)過程中A′在以M為圓心、AD為直徑的圓上的弧AD上運(yùn)動(dòng),當(dāng)A′C取最小值時(shí),由兩點(diǎn)之間線段最短知此時(shí)M、A′、C三點(diǎn)共線,得出A′的位置,進(jìn)而利用銳角三角函數(shù)關(guān)系求出A′C的長即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形ABC中,BD⊥AC于D,CE⊥AB于E,且SADE= S四邊形BEDC , 則∠A=(
A.75°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)、移動(dòng)終端的迅速發(fā)展,數(shù)字化閱讀越來越普及,公交上的“低頭族”越來越多.某研究機(jī)構(gòu)針對(duì)“您如何看待數(shù)字化閱讀”問題進(jìn)行了隨機(jī)問卷調(diào)查(如圖1),并將調(diào)查結(jié)果繪制成圖2和圖3所示的統(tǒng)計(jì)圖(均不完整).請(qǐng)根據(jù)統(tǒng)計(jì)圖中提供的信息,解答下列問題:
(1)求出本次接受調(diào)查的總?cè)藬?shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)表示觀點(diǎn)B的扇形的圓心角度數(shù)為度;
(3)2016年底慈溪人口總數(shù)約為200萬(含外來務(wù)工人員),請(qǐng)根據(jù)圖中信息,估計(jì)慈溪市民認(rèn)同觀點(diǎn)D的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)DAB上,AD=AC,AF⊥CDCD于點(diǎn)E,交CB于點(diǎn)F,則CF的長是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=8,BC=10,以B為圓心,任意長為半徑畫弧分別交BA、BC于點(diǎn)M和N,再分別以M、N為圓心,大于 MN長為半徑畫弧,兩弧交于點(diǎn)P,連結(jié)BP并延長交AC于點(diǎn)D,若△BDC的面積為20,則△ABD的面積為(
A.20
B.18
C.16
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角坐標(biāo)系xoy中,直線l與x、y軸分別交于點(diǎn)A(4,0)、B(0, )兩點(diǎn),∠BAO的角平分線交y軸于點(diǎn)D.點(diǎn)C為直線l上一點(diǎn),以AC為直徑的⊙G經(jīng)過點(diǎn)D,且與x軸交于另一點(diǎn)E.
(1)求證:y軸是⊙G的切線;
(2)請(qǐng)求⊙G的半徑r,并直接寫出點(diǎn)C的坐標(biāo);
(3)如圖2,若點(diǎn)F為⊙G上的一點(diǎn),連接AF,且滿足∠FEA=45°,請(qǐng)求出EF的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖

(1)2018在第________,________

(2)由五個(gè)數(shù)組成的

這五個(gè)數(shù)的和可能是2019,為什么?

如果這五個(gè)數(shù)的和是60,直接寫出這五個(gè)數(shù);

(3)如果這五個(gè)數(shù)的和能否是2025,若能請(qǐng)求出這5個(gè)數(shù);若不能請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,在學(xué)習(xí)絕對(duì)值時(shí),我們知道了絕對(duì)值的幾何含義:

數(shù)軸上AB之間的距離記作|AB|,定義:|AB|=|ab|.如:|a+6|表示數(shù)a和﹣6在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離.|a﹣1|表示數(shù)a和1在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離.

(1)若a滿足|a+6|+|a+4|+|a﹣1|的值最小,b與3a互為相反數(shù),直接寫出點(diǎn)A對(duì)應(yīng)的數(shù)   ,點(diǎn)B對(duì)應(yīng)的數(shù)   

(2)在(1)的條件下,已知點(diǎn)E從點(diǎn)A出發(fā)以1單位/秒的速度向右運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)以2單位/秒的速度向右運(yùn)動(dòng),FO的中點(diǎn)為點(diǎn)P,則下列結(jié)論:PO+AE的值不變;POAE的值不變,其中有且只有一個(gè)是正確的,選出來并求其值.

(3)在(1)的條件下,已知?jiǎng)狱c(diǎn)MA點(diǎn)出發(fā)以1單位/秒的速度向左運(yùn)動(dòng),動(dòng)點(diǎn)NB點(diǎn)出發(fā)以3單位/秒的速度向左運(yùn)動(dòng),動(dòng)點(diǎn)T從原點(diǎn)的位置出發(fā)以x單位/秒的速度向左運(yùn)動(dòng),三個(gè)動(dòng)點(diǎn)同時(shí)出發(fā),若運(yùn)動(dòng)過程中正好先后出現(xiàn)兩次TMTN的情況,且兩次間隔的時(shí)間為4秒,求滿足條件的x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:2cos30°﹣ +(﹣3)2﹣|﹣ |,(說明:本題不能使用計(jì)算器)

查看答案和解析>>

同步練習(xí)冊答案