【題目】如圖,已知四邊形ABDE是平行四邊形,C為邊BD延長線上一點(diǎn),連結(jié)AC、CE,使AB=AC.
(1)求證:△BAD≌△ACE;
(2)若∠B=30°,AB=26,BD=10,求平行四邊形ABDE的面積.
【答案】
(1)證明:∵AB=AC,
∴∠B=∠ACB.
又∵四邊形ABDE是平行四邊形
∴AE∥BD,AE=BD,
∴∠ACB=∠CAE=∠B,
在△DBA和△EAC中
,
∴△BAD≌△ACE(SAS);
(2)解:過D作DM⊥AB于點(diǎn)M,
∵DB=10,
∴DM= DB=5,
∴平行四邊形ABDE的面積=26×5=130.
【解析】(1)根據(jù)平行四邊形的性質(zhì)得出,再利用全等三角形的判定方法得出即可;(2)過D作DM⊥AB于點(diǎn)M,根據(jù)30°角的性質(zhì)可求DM的長,再利用平行四邊形的面積公式計(jì)算即可.
【考點(diǎn)精析】通過靈活運(yùn)用平行四邊形的性質(zhì),掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.現(xiàn)該商場要保證每天盈利6000元,同時又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
如圖,正比例函數(shù)與反比例函數(shù)的圖象交于點(diǎn)。
(1)求這兩個函數(shù)的表達(dá)式;
(2)如圖1,若,且其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)、點(diǎn)。求四邊形的面積;
(3)如圖2,點(diǎn)是反比例函數(shù)圖象上的一點(diǎn),過點(diǎn)作x軸、軸的垂線,垂足分別為、,交直線于點(diǎn),過作x軸的垂線,垂足為。設(shè)點(diǎn)的橫坐標(biāo)為,當(dāng)時,是否存在點(diǎn),使得四邊形為正方形?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角形ABC沿DE折疊,使點(diǎn)A落在BC上的點(diǎn)F處,且DE∥BC,若∠B=70,則∠BDF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,F(xiàn)H平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD=AE2;④∠DFE=2∠DAC ;⑤若連接CH,則CH∥EF.其中正確的個數(shù)為( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把方程x(5x﹣4)+1=2化為一般形式,如果二次項(xiàng)系數(shù)為5,則一次項(xiàng)系數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下: ∵∠1=∠2(已知),
且∠1=∠CGD()
∴∠2=∠CGD(等量代換)
∴CE∥BF()
∴∠=∠BFD()
又∵∠B=∠C(已 知)
∴(等量代換)
∴AB∥CD()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com